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Preface 

The intent o f  this book i s  t o  provide an elementary and intui­
tive approach to differential topology. The topics covered are nowadays 
usually discussed in graduate algebraic topology courses as by-products of 
the big machinery, the homology and cohomology functors. For example, 
the Borsuk-Ulam theorem drops out of the multiplicative structure on the 
cohomology ring of projective space ; the Lefschetz theorem comes from 
Poincaré duality and the Kiinneth theorem ; the Jordan-Brouwer separation 
theorem follows from Alexander duality ; and so ono We have two objections 
to this big-machinery approach : it obscures the elegant intuitive content of 
the subject matter, and it gives the student the impression that only big 
machines can do mathematics. We ha ve attempted to make the results 
mentioned above and resuJts like them (such as the Gauss-Bonnet theorem, 
the degree theorem, the Hopf theorem on vector fields) the mai n topic of 
our book rather than a mixed bag of interesting examples. In doing so we 
have abandoned algebraic topology altogether. Our point of view is that 
these theorems belong in a much more geometrie realm of topology, namely 
intersection theory. Of course, intersection theory, properly done, requires 
its own apparatus: the transversality theorem. We must confess, our sense 
of vulnerability to the charge that we have replaced one machine with 
another. Perhaps ; chacun ci son goal. The transversality arguments, it seems 
to us, can be visualized by the student, something which we feel cannot be 
honest1y said of the singular homology functor. 

ix 



x PREFACE 

This book is appropriate for a leisurely first year graduate course. We 
ha ve also successfully taught a course based on the book to juniors and 
seniors. For undergraduates we suggest that certain topics be deleted-for 
example, the discussion of De Rham theory-and that the main emphasis 
be placed on mod 2 intersection theory, with some of the subjects from 
Chapter 3 presented mod 2 rather than with orientations. (The reader will 
notice, incidentally, that the section on De Rham theory is completely 
independent of the rest of the book. We have avoided using it even in our 
proof of the degree formula in Chapter 4, Section 8. We prove this for­
mula using Stokes theorem rather than the theory of the top cohomology 
class, as in the usual treatment.) 

The book is divided into four chapters. Chapter l contains the elementary 
theory of manifolds and smooth mappings. We define manifolds as subsets 
of Euclidean space. This has the advantage that manifolds appear as objects 
already familiar to the student who has studied calculus in R2 and R3 ; 
they are simply curves and sufaces generalized to higher dimensions. We 
also avoid confusing the student at the start with the abstract paraphernalia 
of charts and atIases. The most serious objection to working in Euclidean 
space is that it obscures the difference between properties intrinsic to the 
manifold and properties of its embedding. We have endeavored to make the 
student aware of this distinction, yet we have not scrupled to use the ambient 
space to make proofs more comprehensible. (See, for example, our use of 
the tubular neighborhood theorem in Chapter 2, Section 3). To provi de 
cohesiveness to the elementary material, we have tried to emphasize the 
"stable" and "generic" quality of our definitions ; whether this succeeds in 
making the basics more palatable, we leave to the reader's judgment. 

The last two sections of Chapter I deai with Sard's theorem and some 
applications. Our most important use of Sard is in proving the transversality 
theorem in Chapter 2, but before doing so we use it to deduce the existence 
of Morse functions and to establish Whitney's embedding theorem. (lnciden­
tally, it may seem pointless to prove the embedding theorem since our mani­
folds already sit in Euclidean space. We feel we have just placed the emphasis 
elsewhere : does there exist a k-dimensional mainfold so pathological that 
one cannot find a diffeomorphic copy of it inside Euclidean space of specified 
dimension N? Answer : no, provided N > 2k + 1 .) 

Chapter 2 begins by adding boundaries to manifolds. We classify one­
manifolds and present Hirsch's proof of the Brouwer fixed-point theorem. 
Then the transversality theorem is derived, implying that transversal inter­
sections are generico Transversality permits us to define intersection numbers, 
and the one-manifold classÌfication shows that they are homotopy invariants. 
At first we do intersection theorem mod 2, so that the student can become 
familiar with the topology without worrying about orientations. Moreover, 
mod 2 theory is the natural setting for the last two theorems of the chapter : 



Preface xi 

the Jordan-Brouwer separation theorem and the Borsuk-Ulam theorem. In 
each of the Iast three chapters we ha ve included a section in which the 
student himself proves major theorems, with detailed guidance from the text. 
The Jordan-Brouwer separation theorem is the first of these. We found that 
our students received this enthusiastically, deriving real satisfaction from 
applying the techniques they had learned to significantly extend the theory. 

In Chapter 3 we reconstruct intersection theory to include orientations. 
The Euler characteristic is defined as a self-intersection number and shown 
to vanish in odd dimensions. Next a primitive Lefschetz fixed-point theorem 
is proved and its use illustrated by an informaI derivation of the Euler 
characteristics of compact surfaces. Translated into the vector field context, 
Lefschetz implies the Poincaré-Hopf index theorem. In an exercise section 
using the apparatus of the preceding discussions, the student proves the 
Hopf degree theorem and derives a converse to the index theorem. Finally, 
we reIate the differential Euler characteristic to the combinational one. 

Chapter 4 concerns forms and integration. The centraI result is Stokes 
theorem, which we do essentially as M. Spivak does in his Calculus on 
Manifolds. Stokes is used to prove an eIementary but, we believe, largely 
underrated theorem : the degree formula relating integration to mappings. 
FinaIly, from this degree formula we derive the Gauss-Bonnet theorem for 
hypersurfaces in Euclidean space. Chapter 4 also includes an exercise section 
in which the student can construct De Rham cohomology and proves homo­
topy invariance. Although other problems relate cohomology to integration 
and intersection theory, the subject is treated essentiaIly as an interesting 
aside to our primary discussion. (In particular, cohomoIogy is not referred 
to anywhere else in the text.) 

The originaI inspiration for this book was J. MiInor's lovely Topology 
Irom the Differential Viewpoint. Although our book in its present form 
involves a larger inventory of topics than Milnor's book, our debt to him 
remains c1ear. 

We are indebted to Dan Quillen and John Mather for the elegant formu­
lation of the transversality theorem given in Chapter 2, Section 3. We are 
also grateful to Jim King, Isadore Singer, Frank Warner, and Mike Cowan 
for valuable criticism, to Dennis Sullivan, Shlomo Sternberg, and Jim 
Munkres for many helpful conversations, and to Rena Themistocles and 
PhyIlis Ruby for converting illegible scribble into typed manuscript. Most 
particularly, we are indebted to Barret O'Neill for an invaluable, detailed 
review of our first draft. 

Cambridge, Massachusetts VICTOR GUILLEMIN 

ALAN POLLACK 





Stra ight Forwa rd 

to the Stu dent  

This book is written for mathematics students who have had 
one year of analysis and one semester of linear algebra. Included in the 
analysis background should be familiarity with basic topological concepts 
in Euclidean space : openness, connectedness, compactness, etc. We borrow 
two theorems from analysis which some readers may not have studied : the 
inverse function theorem, which is used throughout the text ; and the change 
of variable formula for multiple integration, which is needed only for 
Chapter 4. An excellent reference source for these facts is Spivak [2] (pages 
34 and 67 respectively). 

The exercises are not only indispensable to understanding the material ; 
they are freeIy referred to by the text. Those feIt to be particularly funda­
mental-including the ones later referenced-are indicated by asterisks (*). 

(In particular, asterisks are not signals to warn students of hard problems.) 
Rere is a miscellany of terms which are used but not defined in the text. 
For maps I :  X -----> Y of two sets : injective = one-to-one ; surjective = 

onto ; bijective = injective + surjective = one-to-one and onto. 
A collection of sets {U .. } covers a set X if X is contained in the union 

U U ... An open cover (or open covering) of X is a collection of open sets .. 
{U .. } which covers X. One cover {Vp} is a refinement of another, {U .. }, if every 
set Vp is contained in at least one U ... By the second axiom 01 countability, 
every open cover {U .. } in R" has a countable refinement. (Proof· Take the 

xiii 



xiv STRAIGHT FORWARD TO THE STUDENT 

collection of alI open balIs which are contained in some V., which ha.ve 
rational radii, and which are centered at points having only rational coordi­
nateso) 

If X is a subset contained in R", then a subset V of X is (re/ative/y) open 
in X if it can be written as the intersection of X with an open subset of 
R": V = V n X, V open in R" o If Z is a subset of X, we can also speak of 
open covers of Z in X, meaning coverings of Z by relatively open subsets 
of Xo Every such cover of Z may be written as the intersection of X with a 
covering of Z by open subsets of R"o Since the second axiom of countability 
is valid for R", every open cover of Z relative to X has a countable refinement. 
(Given {U .. }, relatively open in X, write U .. = U .. n Xo Then let 17p be a 
countable refinement of lU .. } in R", and define Vp = 17p n X)o  
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CHAPTER 1 

Ma n ifo lds  

and  Smooth Ma p s  

§1 Definitions 

Beautiful, deep insights into the strueture and properties ofmany 
geometrie spaees ean be developed intuitively with the aid of a few tools from 
elementary calculus. Because calculus is built on the local geometry of Eucli­
dean space, it most naturally adapts itself to spaces that locally "Iook the 
same" as some Euclidean space. We cali such objects manifolds, spaces in 
which the environment of each point is "just like" a small piece of Euclidean 
space. 

The most familiar examples of manifolds are smooth surfaces like the 
sphere or torus (the crust of a doughnut), where each point lies in a little 
curved disk that may be gently flattened into a disk in the pIane (Figure I - I ) . 
An old friend that do es not qualify as a manifold is the cone. Every point but 
one has a nice Euclidean environment, but no neighborhood of the vertex 
point looks like a simple piece of the piane. (See Figure 1 -2.) 

To translate our idea into a mathematical definition, we need to make 
precise the eriterion of "sameness." We do so in terms of mappings. A map­
ping j of an open set U c Rn into Rm is called smooth if it has eontinuous 
parti al derivatives of ali orders. However, when the domain ofjis not open, 
one usually cannot speak of partial derivatives. (Why ?) So we adapt the 
open situation to-more generaI spaces. A map j :  X ------> Rm defined on an 

l 
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Sphere 

CHAPTER l MANIFOLOS ANO SMOOTH MAPS 

Torus Smooth surface 

Figure 1-1 

Cone 

Figure 1-2 

arbitrary subset X in Rn is called smooth if it may be locally extended to a 
smooth map on open sets ; that is, if around each point x E X there is an 
open set U c Rn and a smooth map F : U ---> Rm such that F equals f on 
U () X (Figure 1 -3). The shorthand term local, referring to behavior only in 
some neighborhood of a point, i s  very convenient.  Recall that the (relatively) 
open subsets of X are exactly those that can be written in  the form U () X, 

t (X) 

Figure 1-3 
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where U is an open set of R n. So smoothness is a Iocal property ; / :  X -----> R m  
i s  smooth i f  i t  i s  smooth i n  a neighborhood o f  each point o f  X. (Contrasting 
with "IoeaI" is the term global, whieh refers to the whoIe space X as a unified 
object.) 

A smooth map I :  X -----> Y of subsets of two Euclidean spaces is a diffeo­
morphism if it is one to one and onto, and if the inverse map I- I : Y -----> X is 
also smooth. X and Y are diffeomorphic if such a map exists. In our philoso­
phy, two diffeomorphic sets are intrinsically equivalent. They may be con­
sidered as two copies of a single abstraet space, which may happen to be 
differently situated in their surrounding Euclidean spaces. Soon you will 
develop sufficient intuition to recognize easiIy many spaees as diffeomorphic. 
Perhaps you can begin by thinking about a few pictorial examples (Figure 
1 -4). 

• • 

CIosed 
in!erval 

o 
Circ1e 

Sphere 

� . �OOO, .. � 
Diffeomorphic 

8 
Diffeomorphic 

Diffeomorphic 

Figure 1-4 

oV 
No! diffeomorphic 

D8 
No! diffeomorphic 

[jJ (2). " <::::::>- .. ' o', • • _ " .,, ' .. �" 

No! diffeomorphic 

With the proper concept of equivalence, we can now define manifolds. 
Suppose that X is a subset of some big, ambient Euclidean space RN. Then X 
is a k-dimensional manifold if it is Iocally diffeomorphic to Rk, meaning that 
eaeh point x possesses a neighborhood V in  X which is diffeomorphie to an 
open set U of Rk. A diffeomorphism cf> : U -----> V is called a parametrization 
of the neighborhood V. (Remember, V must be expressible as P n X for 
some open set P c RN.). The inverse diffeomorphism cf>- I : V -+ U is called 
a coordinate system on V. When we write the map cf>-I i n  coordinates cf>- I = 
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(XI > • . .  , Xk), the k smooth functions XI ' . • .  , Xk on V are called coordinate 
functions. (People tend to be a bit sloppy, calling XI , . . .  , Xk "Iocal coordi­
nates" on V and writing a typical point of V as (XI " "  , Xk)' What is really 
happening is that the k-tuple of coordinate functions (x I , • • •  , xk) is used to 
identify V with U implicitly, and a point v E V is identified with its coordi­
nates (X I (v), . . .  , xk(v» E U. But, after all, we already encounter such ambigu­
ities when speaking of coordinates in Euclidean space.) The dimension k of 
X is often written dim X. 

As an example, let us show that the circle 

SI = {(x, y) E R2:X2 + y2 = l }  

i s  a one-dimensional ma�ifold. First, suppose that (X, y )  lies i n  the upper 
semicircle where y > O. Then if>1 (X) = (x, ,JI - X2) maps the open interval 
W = (- I ,  I )  bijectively onto the upper semicircle (Fig. 1 -5). Its inverse 
(x, y) -> X defined on the upper semicircle is certainIy smooth, for it extends 
to à smooth map of ali of R2 into R l . Therefore if>1 is a parametrization. A 
parametrization of the lower semicircle where y < O is similarly defined by 
if>2(X) = (x, -,J 1 - X2). These two maps give local parametrizations of SI 
around any point except the two axis points ( 1 ,  O) and ( - 1 ,  O). To cover these 
points, use if>3(y) = (,Jl - y2, y) and if>4(y) = ( -,J 1 - y2, y) mapping W 
to the right and left semicircles. So we have shown the circle to be a one­
dimensionai manifold by covering it with four parametrizations. It is not 
hard to do it with only two. (Ca n you show that the whole circle cannot be 
parametrized by a singie map ?) Use this argument to show more generally 
that the n-sphere in Rn+ l , Sn = {x E Rn>1 : I x l = I }, is an n-dimensionaI 
manifold. (Here I x l  denotes the usual norm ,JxÌ + . . .  + X;+1 ')  

"'1 (x) 

Figure 1-5 

A useful method of manufacturing new manifolds from known ones is 
the cartesian product. Suppose that X and Y are manifolds inside RN and RM 
respectively, so that X X Y is a subset of RM X RN = RM+N. If dim X = k 
and x E X, we can find an open set W c Rk and a local parametrization 
ti> : W -> X around x. Similarly, if dim Y = I and y E Y, there is an open 
set U c R1 and a lacai parametrization '" : U ---> Y around y. Define the' 
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map I/> x If/ : W X U ---> x x Y by the formula 

I/> x If/(w, u) = (I/>(w), If/(u» .  

Of course, W X U is an open set in Rk X RI = Rk+l, and it is easy to check 
that I/> X If/ is a local parametrization of X X Y around (x, y). (Check this 
point carefully, especially verifying that (I/> X If/)- I is a smooth map on the 
not-necessarily-open set X X Y C RM+N). Since this map is a local para­
metrization around an arbitrary point (x, y) E X X Y, we have proved : 

Theorem. If X and Y are manifolds, so is X X Y, and dim X X Y = 

dim X+ dim Y. 

We mention another useful term here. If X and Z are both manifolds in 
RN and Z c X, then Z is a submanifold of X. In particular, X is itself a sub­
manifold of RN. Any open set of X is a submanifold of X. 

The reader should be warned that the slothful authors will often omit the 
adjective "smooth" when speaking of mappings ; nevertheless, smoothness is 
virtually always intended. 

EXERCISES 

1. If k < l we can consider Rk to be the subset {(a l , . . .  , ak' 0, . . . , O)} in 
R/. Show that smooth functions on Rk, considered as a subset of R/, are 
the same as usual. 

*2. Suppose that X is a subset of RN and Z is a subset of X. Show that the 
restriction to Z of any smooth m-ap on X is a smooth map on Z. 

*3. Let X c RN, Y C RM, Z C RL be arbitrary subsets, and let! : X ---> Y, 
g : Y ---> Z be smooth maps. Then the composite g o ! : X ---> Z is smooth. 
If ! and g are diffeomorphisms, so is g o f 

4. (a) Let Ba be the,open ball {x: 1 x 12 < a} in Rk. (I x 12 = I;xt) Show that 
the map 

is a diffeomorphism of Ba onto Rk. [HINT: Compute its inverse 
directly.] 

(b) Suppose that X is a k-dimensional manifold. Show that every point 
in X has a neighborhood diffeomorphic to ali of Rk. Thus local 
parametrizations may always be chosen with ali of Rk for their 
domains. 
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*5. Show that every k-dimensional vector subspace V of RN is a manifold 
diffeomorphic to Rk, and that ali linear maps on V are smooth. If 
if>: Rk - -) V is a Iinear isomorphism, then the corresponding coordinate 
functions are Iinear functionals on V, called linear coordinates. 

6. A smooth bijective map of manifolds need not be a diffeomorphism. In 
fact, show that f: R I ---) R I,  f(x) = x3, is an example. 

7. Prove that the union of the two coordinate axes in RZ is not a manifold. 
(HINT : What happens to a neighborhood of O when O is removed ?) 

8. Prove that the paraboloid in R3, defined by XZ + y2  - Z2  = a, is a 
manifold if a >  O. Why doesn't XZ + yZ - ZZ = O define a manifoId? 

9. Explicitly exhibit enough parametrizations to cover SI X SI C R4. 

lO. "The" torus is the set of points in R 3 at distance b from the circle of 
radius a in the xy pIane, where O < b < a. Prove that these tori are aIl 
diffeomorphic to SI X SI. Also draw the cases b = a and b > a; why 
are these not manifoIds ? 

11. Show that one cannot parametrize the k sphere Sk by a single para­
me\rization. [HINT: Sk is compact.] 

* 12. Stereographic projection is a map n from the punctured sphere SZ - {N} 
onto RZ, where N is the north pole (O, O, l) .  For any p E SZ - {N}, n(p) 
is defined to be the point at which the line through N and p intersects 
the xy pIane (Figure 1-6). Prove that n :  SZ - {N} ---) RZ is a diffeo­
morphism. (To do so, write n explicitly in  coordinates and solve for n- I .) 

Note that if p is near N, then I n(p) I is Iarge. Thus n allows us to 
think of SZ a copy of R2 compactified by the addition of one point "at 
infinity." Since we can define stereographic projection by using the 

N 

Figure 1·6 
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south pole instead of the north, S2 may be eovered by two loeal parame­
trizations. 

*13. By generalizing stereographie projeetion define a diffeomorphism 
Sk - (N} -> Rk. 

*14. If f :  X -> X' and g : Y -> Y' are smooth maps, define a product map 
f x g : X X Y -, X' x Y' by 

(/ x g)(x, y) = (/(x), g(y» . 

Show thatf X g is smooth. 

15. Show that the projeetion map X X Y -> X, earrying (x, y) to x, is 
smooth. 

*16. The diagonal a in X x X is the set of points of the form (x, x). Show 
that a is diffeomorphic to X, so a is a manifold if X is. 

*17. The graph of a map f: X --, Y i s  the subset of X x Y defined by 

graph (/) = ( x,f(x» : x E X}. 

Define F: X -> graph (/) by F (x) = (x,f(x» . Show that if f is smooth, 
F is a diffeomorphism ; thus graph (/) is a manifold if X is. (Note that 
a = graph (identity).) 

*18. (a) An extremely useful funetion f: R l -> R l is {e-l/X' x >  O 
f(x) = 

O x <O 

Prove that f is smooth. 
(b) Show that g(x) = f(x - a)g(b - x) is a smooth funetion, positive 

on (a, b) and zero elsewhere. (Here a < b .) Then 

fx g dx 
h( x) = "-:--"�=----L

�
g dx 

is a smooth funetion satisfying h(x) = O for x < a, h(x) = I for 
x > b ,  and O < h(x) < l for x E (a, b). 

(c) Now eonstruet a smooth funetion on Rk that equals I on the ball of 
radius a, zero outside the ball of radius b ,  and is strietIy between O 
and l at intermediate points. (Here O < a < b .) 
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§2 Derivatives and Tangents 

We begin by recalling some facts from caIculus. Suppose that l 
is a smooth map of an open set in Rn into Rm and x is any point in its domain. 
Then for any vector h E Rn, the derivative of/in the direction h, taken at the 
point x, is defined by the conventional limit 

dlx(h) = limf(x + lh) - I(x) 
l-O l 

With x fixed, we define a mapping dix: Rn -> Rm by assigning to each vector 
h E Rn the directional derivative dfx(h) E Rm. Note that this ma p, which we 
cali the derivative oliaI x, is defined on ali of Rn, even thoughl need not be. 

In caIculus courses one proves that the derivative mapping dfx : Rn -> Rm 
is Iinear. (See, for example, Spivak [2].) And as a linear map, dfx may be 
represented as a matrix in terms of the standard bases. In fact, if we write 
I as f(y) = (f.(y), . . .  , Im(y» , then this matrix is just the Jacobian matrix 
of l at x :  

al. (x) ax. ' 

alm (x) ax. ' . . . , alm (x) aXn 
But although the derivative of I may be expressed in terms of its m X n 
partial derivatives, it is much more natural and elegant to think of dix as a 
linear map, dix: Rn -> Rm . 

One way in which the naturality of the definition exhibits itself is in the 
simplicity of the chain rule. Suppose that U c Rn and V c Rm are open sets, 
while I: U -> V and g: V -> RI are smooth maps. Then the Chain Rule says 
that for each x E U, 

d(g o f)x = dgfcxl o dfx. 

Thus if we have a sequence 

ULV�RI, 
�, ... _-------.,., 

gof 

We get a commutative dia�ram of derivative maps 

d(g 0f>', 
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(A diagram of mappings is commutative if any two sequences of maps that 
start and end at the sa me sets produce the same composite map.) 

Note that if I :  U ---> Rm is itself a linear map L, then dix = L for ali x E 

U. In particular, the derivative of the incIusion map of U into Rn at any point 
x E U is the identity transformation of Rn. 

The derivative of a mapping is its best linear approximation. So we can 
use derivati ves to identify the linear space that best approximates a manifold 
X at the point x. Suppose that X sits in RN and that cp: U ---> X is a local 
parametrization around x, where U is an open set in R\ and assume that 
cp(O) = x for convenience. The best linear approximation to cp :  U ---> X at O is 
the map 

Define the tangent space of X at x to be the image of the map dcpo: Rk ---> RN. 
So the tangent space, which we denote TiX), is a vector subspace of RN 
whose parallel translate x + Tx(X) is the cIosest flat approximation to X 
through x (Figure 1 -7). By this definition, a tangent vector to X c RN at x E 

X is a point v of RN that lies in the vector subspace Tx(X) of RN. However, it 
is natural to picture v geometrically as the arrow running from x to x + v. 

x+Tx(X) 

Figure 1-7 

Before proceeding, we must resolve an ambiguity in the definition of 
Ti X); will another choice of local parametrization produce the same tangent 
space ? Suppose that 1fI: V -. X is another" choice, with IfI(O) = x as well. By 
shrinking both U and V, we may assume that cpC U) = 1fI( V). Then the map 
h = 1fI- 1 o cp: U ---> Vis a diffeomorphism. Write cp = lfI o h and differentiate : 
dcpo = dlfl o o dho' This relation implies that the image of dcpo is contained in 
the image of dlflo. The converse follows by switching the roles of cp and 1fI, 
so dcpo(Rk) = dlflo(Rk) and Tx(X) is well defined. (For another view pf tangent 
spaces, see Exercise 1 2  in the exercises for this section.) 

The dimension of the vector space TxCX) is, as you expect, the dimension 
k of X. To prove this, we use the smoothness of the inverse cp-l. Choose an 
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open set W in RN and a smooth map <}>' : RN -> Rk that extends 1/>-1. Then 
<}>' o I/> is the identity map of U, so the chain rule implies that the sequence of 
linear transformations 

is the identity map of Rk. It follows that dl/>o : Rk -> Tx(X) is an isomorphism, 
so dim TAX) = k. 

We can now construct the best linear approximation of a smooth map of 
arbitrary manifoldsI: X --> Y at a point x. If/(x) = y, this derivative should 
be a linear transformation of tangent spaces, dIx : TAX) -. Ti Y ). We require 
two items of our generalized definition of derivative. First, for maps in 
Euclidean space, we expect the new derivative to be the sa me as the usual one. 
Second, we demand the chain rule. It is easy to convince yourself that there 
is only one possible definition with these requisites. Suppose that 1/> :  U --. X 
parametrizes X about x and 1fI :  V -. Y parametrizes Y about y, where 
U c R\ V C RI, and, say, 1/>(0) = x, 1fI(0) = y. lf U is small enough, then 
we can draw the foIlowing commutative square : 

I 
X > Y  

� l 1� I 
U >V 

h=I{I-1 o/o� 

We know what dl/>o, dlflo, and dho must be, and the chain rule specifies that 
taking derivatives converts the preceding diagram into a commutative square 
of linear transformations : 

dix 
Tx(X)-------------> T/Y) 

d�o 1 I dl{lo 

dho 

As dI/>o is an isomorphism, there is only one acceptable definition for dIx, 
namely, 

Of course, in order to use this definition of dIx, we must verify that it does not 
depend on the particular parametrizations I/> and lfI used. This verification is 
just like the one given to establish that the definition of TAX) does not de-
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pend on parametrization. Do write down the calculation yourself to be sure 
that you understand. 

Does our extension of the derivative to maps of arbitrary manifolds truly 
conform to the chain rule as we intended ? (H had better, for we showed that 
it is the only possibility.) Let g: Y -+ Z be another smooth map, and let 
11: W -+ Z parametrize Z about z = g(y). Rere W c Rm and 11(0) = z. Then 
from the commutative dia:gram 

f g 
X >Y ) Z  

� r � r � 1 I I 
U > V )W 

h = �-I ofo � 
j = �-I ogo � 

we derive the square 
gof 

X > Z  

� 1 1 � 

U }W 
joh 

Thus, by definition, 

d(g o f)x = dl10 o d(j o h)o o dqfal . 

By the chain rule for maps of open subsets of Euclidean spaces, 
d(j o h)o = (dj)o o (dh)o. Thus 

d(g o f)x = (dl1o o djo o d'fio I) o (d'fio o dho o dif> o I) = dgy o d/x ' 

We have proved the 

Chain Rule. If x.L. y.!.-. Z are smooth maps of manifolds, then 

d(g o f)x = dg/ex ) o d/x ' 

EXERCISES 

*1. For a submanifold X of Y, let i: X -+ Y be the inclusion map. Check 
that dix is the inclusion map of Tx(X) into Tx( Y). 

*2. If U is an open subset of the manifold X, check that 
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3. Let V be a vector subspace of RN. Show that Tx( V) = V if x E V. 

*4. Suppose thatf: X -> Y is a diffeomorphism, and prove that at each x 
its derivative dfx is an isomorphism of tangent spaces. 

5. Prove that Rk and RI are not diffeomorphic if k *" I. 

6. The tangent space to SI at a point (a, b) is a one-dimensional subspace 
of R2. Explicitly calculate the subspace in terms of a and b .  [The answer 
is obviously the space spanned by (-b , a), but prove iL] 

7. S.imilarly exhibit a basis for TP(S2) at an arbitrary point p = (a, b ,  c). 

8. What is the tangent space to the paraboloid defined by 
X2 + y2 - Z2 = a at (,./0, O, O), where (a > O)? 

*9. (a) Show that for any manifolds X and Y, 

T(x.y)(X x Y) = Tx(X) x TiY). 

(b) Letf :  X x Y -> X be the projection map (x, y) -> x. Show that 

df(x.y) : Tx(X) x Ti Y) -> T,,(X) 

is the analogous projection (v, w) -> v. 
(c) Fixing any y E Y gives an injection mapping f: X -> X x Y by 

f(x) = (x, y). Show that dfxCv) = (v, O). 
(d) Let f: X -> X', g :  Y -> Y' be any smooth maps. Prove that 

d(f X g)(x.y) = dfx X dgy. 

*10. (a) Let f: X -> X x X be the mapping f(x) = (x, x). Check that 
dfx(v) = (v, v). 

(b) If à is the diagonal of X x X, show that its tangent space T(x.x/à) 
is the diagonal of Tx(X) x TxCX). 

*11. (a) Suppose that f: X -> Y is a smooth map, and let F:  X -> X x Y 
be F(x) = (x,J(x». Show that 

dFx(v) = (v, dfxCv» . 

(b) Prove that the tangent space to graph (f) at the point (x, f(x» is 
the graph of dfx: Tx(X) -> Tf(x)( Y). 

*12. A curve in a manifold X is a smooth map t -> c(t) of an interval of R I 
into X. The velo city vector of the curve c at time to-denoted simply 
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dcjdt(to)-is defined to be the vector dc,.( I )  E Tx.(X), where Xo = c(to) 
and dc,. : Rt -> Tx.(X). In case X = Rk and c(t) = (Ct (t), . . . , ck(t» in 
coordinates, check that 

Prove that every vector in Tx(X) is the velocity vector of some curve in 
. X, and conversely. [HINT: It's easy if X = Rk. Now parametrize.] 

§ 3  The Inverse Function Theorem 

and Immersions 

Before we really begin to discuss the topology of manifolds, we 
must study the Iocal behavior of smooth maps. Perhaps the best reason for 
always working with smooth maps (rather than continuous maps, as in non­
differential topology) is that Iocal behavior is often entirely specified, up to 
diffeomorphism, by the derivative. The elucidation of this remark is the 
primary objective of the first chapter. 

If X and Y are smooth manifolds of the sa me dimension, then the simplest 
behavior a smooth map I: X -> Y can possibly exhibit around a point x is 
to carry a neighborhood of x diffeomorphically onto a neighborhood of 
y =/(x). In such an instance, we call I a local diffeomorphism at x. A neces­
sary condition for I to be a Iocal diffeomorphism at x is that its derivative 
mapping dix

'
: TAX) -+ Ty( Y) be an isomorphis11}. (See Exercise 4 in Section 

2). The fact that this Iinear condition is also sufficient is the key to under­
standing the remark above. 

The Inverse Function Tbeorem. Suppose that I: X -> Y is a smooth map 
whose derivative dix at the point x is an isomorphism. Then I is a local 
diffeomorphism at x. 

The Inverse Function Theorem is a truly remarkable and valuable fact. 
The derivative dix is simply a single Iinear map, which we may represent by a 
matrix of numbers. This linear map is nonsingular precisely when the deter­
minant of its matrix is nonzero. Thus the Inverse Function Theorem tells us 
that the seemingly quite subtle question of whether I maps a neighborhood 
of x diffeomorphically onto a neighborhood of y reduces to a trivial matter 
of checking if a single number-the determinant of dj�-is nonzero ! 

You have probably seen a proof of the Inverse Function Theorem for the 
special case when X and Y are open subsets of Euclidean space. One may be 
found in any text on calculus of several variables-for example, Spivak [2]. 
You should easily be able to translate the Euclidean result to the manifold 
setting by using local parametrizations. 
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Remember that the Inverse Funetion Theorem is purely a loeal result; it 
only tells us about the behavior of/near the point x. Even if dix is nonsingular 
for every x E X, one eannot conclude that/is globally a diffeomorphism of 
the spaees X and Y. Sueh a map is, however, a loeal diffeomorphism at every 
point x E X, and so it will simply be ealled a loeal diffeomorphism.A typieal 
example of a loeal diffeomorphism that is not a global diffeomorphism is the 
map I: R) -> S), defined by I(t) = (eos t, sin t). 

We ean suggestively reformulate the Inverse Funetion Theorem by using 
Ioeai eoordinates : if dix is an isomorphism, then one ean ehoose Ioeal eoor­
dinates around x and y so that I appears to be the identity,!(x), . . .  , xk) = 
(x), . . .  , Xk). In more sophistieated language, there exist Ioeal parametriza­
tions if> :  U -> X, 1fI: U -> Y with the same open domai n in R\ sueh that the 
following diagram eommutes : 

f 
X )Y 

� l l � 
U > U  

Identity 

In generaI, we shall say that two maps/: X -> Y andf' : X' -> Y' are equiva­
lent if there exist diffeomorphisms rJ, and p eompleting a commutative square 

f 
X ---�-�> Y 

·1 r l p 
X' ------:> Y' 

(Another Ioeution with the sa me meaning is "I and f' are the same up to 
diffeomorphism.") In this terminology, the Inverse Funetion Theorem says 
that if dix is an isomorphism, then/is Ioeally equivalent, at x, to the identity. 
A Iinear map is obviously equivalent to the identity if and onIy if it is an 
isomorphism. Therefore still another version of the theorem states that I is  
Ioeally equivalent to the identity precisely when dix i s .  

Of eourse, for the Inverse Funetion Theorem to apply, the dimensions of 
X and Y must be equal. What is the best loeai behavior a map ean have when 
dim X < dim Y? Differentially, the best we ean demand is that dix: Tx(X)-> 
Ty{ Y) be injeetive. If so,! is' said to be an immersion at x. If I is an immersion 
at every point, it is siniply called an immersion. The canonical immersion 
is the standard inclusion map of Rk into R1 for I > k, where (a» .. . ,ak) 
maps to (a) , . . .  ,ak' 0, . . .  , O). In faet, up to diffeomorphism, this is Iocally 
the only immersion. 
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Local Immersion Theorem. Suppose that f: X ---> Y is an immersion at x, 
and y = f( x). Then there exist local coordinates around x and y such that 

In other words, f is locally equivalent to the canonical immersion near x. 

Proof Begin by choosing any local parametrizations yielding a commuta­
tive diagram 

I 
X }Y  

� 1 1 � </1(0) = x 
",(O) = y 

U l V  
g 

Now we try to augment g so that the Inverse Function Theorem may be ap­
plied. As dgo : Rk ---> RI is injective, by a change of basis in RI we may assume 
that it has an l X k matrix 

(�) 
where h is the k x k identity matrix. Now define a map G :  U X RI-k ---> RI 
by 

G( x, z) = g( x) + (0, z). 

G maps an open set of RI into RI, and the matrix of dGo is Il' Therefore the 
Inverse Function Theorem implies that G is a local diffeomorphism of RI at 
O. Note that we have defined G so that g = G o (canonical immersion). Since 
'" and G are local diffeomorphisms at 0, so is '" o G;  thus '" o G may be used 
as a local parametrization of Y around the point y. Moreover, if we shrink U 
and V sufficiently, the following diagram commutes : 

X } Y 

� r l �oG 
I Canonica l 
U ) V Q.E.D. 

immersion 

One useful coroIlary is obvious : if f is an immersion at x, then it is an 
immersion in a neighborhood of x. 

It is important to recognize that the immersion condition is strictly local 
in nature. For example, when X and Y have the same dimension, then im-
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mersions are the same as local diffeomorphisms. In contrast, actual diffeo­
morphisms must satisfy both a local differential condition plus a global 
topological one : they must be local diffeomorphisms, and they must be one­
to-one and onto. So, in order to force an immersion to exhibit desirable global 
properties, we must append topological conditions to the local differential 
data. 

Of particular interest is the image of an immersion. The image of the 
canonical immersion Rk -> Rl is the nicest conceivable example of a sub­
manifold. Nevertheless, the image of an arbitrary immersioni: X -> Y need 
not be a submanifold of Y. Let us see why. From the Local Immersion Theo­
rem it is evident that I maps any sufficiently small neighborhood W of an 
arbitrary point x diffeomorphically onto its image/(W) in Y. So every point 
in the image ofl does sit within a parametrizable subset of/(X). Isn't this the 
definition of a manifold ? Not quite. For I(X) to be a manifold, points must 
ha ve parametrizable neighborhoods, but the subsets I(W) need not be open 
in Y. 

Consider, for ex ampIe, a map that twists the circle into a figure eight 
(Figure 1 -8). This is an immersion of SI into R2, but its image is not a mani­
fold. Here, of course, the trouble arises because the immersion is not one-to 
one, but even the image of an injective immersion need not be a manifold. 
For example, the sa me figure eight can be realized as the image ofthe injective 
immersion of RI into R2 shown in Figure 1-9. 

o Twist 8 Si 
Figure eight 

Figure 1-8 

Wrap 

� 8 
Figure 1-9 

Much more anomalous i nstances may be cited. Let g :  RI -> SI be the 
local diffeomorphism gel) = (cos 2m, sin 2m). Define G :  R2 -> SI X SI by 
G(x, y) = (g(x), g(y)). G is a local diffeomorphism of the pIane onto the 
torus. In fact, looking at G on the fundamental unit square, one may consider 
it to be a construction of the torus by gluing opposite sides of the square 
together (Figure l - I O). Now define a map of RI into the torus by restricting 
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D 
Square Cylinder Torus 

G 
Figure 1-10 

Figure 1-11 

G to a straight line through the origin in R2 with irrational slope. Since G 
is a local diffeomorphism, this is an immersion that wraps R I around the 
torus (Figure l - I l )  Moreover, the irrationality of the slope implies that the 
immersion is one-to-one and that its image is a dense subset of the torus ! 

Do these, pathologies indicate that we have no hope of drawing global 
conclusions from our local classification theorem for immersions ? Notice 
that the two injective immersions behave strangely because they map too 
many points "near infinity" in R I into small regions of the image. Perhaps 
prohibiting this behavior will sufficiently tame immersions. The generaI 
topological analog of points "near infinity" is the exterior of a compact sub­
set in a given space, the compact set being thought of as very large. A map 
f :  X --> Y is called proper if the preimage of every compact set in Y is com­
pact in X. Intuitively, a proper map is one that maps points "near infinity" 
in X to points "near infinity" in Y. An immersion that is injective and 
proper is called an embedding. Having subjoined appropriate global topo­
logical constraints to the local immersion condition, we may now prove 
a reasonable global extension of the Local Immersion Theorem. 

Theorem. An embeddingf: X --> Y maps X diffeomorphically onto a sub­
manifold of Y. 

Proof We ha ve seen that in order to provej(X) is a manifold, it suffices to 
show that the image of any open set W of X is an open subset ofj(X). Ifj(W) 
is not open inf(X), then there exists a sequence ofpoints Yi E j(X) that do not 
belong to f(W) but that converge to a point Y in f( W). As the set [y, ya is 
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compact, its preimage in X must be compact. Each point Yi has precisely one 
preimage point Xi in X, and Y possesses precisely one preimage point X, which 
must belong to W. Since [x, XI} is compact, by passage to a subsequence we 
may assume that Xi converges to a point Z E X. Thenf(xi) -4/(Z) ; therefore 
since f(x,) � f(x), the injectivity of f implies that z = x. Now W is open ; 
so since X, � X, we conclude that, for large i, x, E W. This resuIt contradicts 
the assumption Yi � f(W). Sof(X) is indeed a manifold. It is now trivial to 
check that f: X �f(X) is a diffeomorphism, for we now know f to be a 
local diffeomorphism from X to f(X). Since it is bijective, the inverse f- I : 
f(X) � X is well defined as a set map. But locally f- I is already known to 
be smooth. Q.E.D. 

Of course, when X itself is a compact manifold, every map I: X -4 Y 
is proper. Thus for compact manifolds, embeddings are just one-to-one im­
mersions. 

EXERCISES 

1. Let A be a linear map of Rn, and b E Rn. Show that the mapping 
X -, Ax + b is a diffeomorphism of Rn if and only if A is nonsingular. 

':'2. Suppose that Z is an l-dimensionaI submanifold of X and that z E Z. 
Show that there exists a local coordinate system [XI > . . .  , xd defined in 
a neighborhood U of z in X such that Z n U is defined by the equations 
x,+ 1 = O, . . .  , Xk = O. 

3. Let I: RI � RI be a local diffeomorphism. Prove that the image of f 
is an open interval and that, in faci, I maps R 1 diffeomorphically onto 
this interval. 

4. To contrast with Exercise 3, construct a local diffeomorphism f :  R2 � 
R2 that is not a diffeomorphism onto its image. [HINT : Start with our 
example for R 1 - -) SI .] 

5. Prove that a local diffeomorphism f: X - -, Y is actually a diffeomor­
phism of X onto an open subset of Y, provided thatIis one-to-one. 

6. (a) IfI and g are immersions, show thatf x g is. 
(b) If f and g are immersions, show that g o f is. 
(c) IfI is an immersion, show that its restriction to any submanifold 

of its domain is an immersion. 
{d) When dim X = dim Y, show that immersions f: X - ,  Y are the 

sa me as local diffeomorphisms. 

7. (a) Check that g :  RI --) SI , g(t) = (cos 2nt, sin 2nt), is, in fact, a local 
diffeomorphism. 
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(b) From Exercise 6, it follows that G :  R2 --> SI X SI , G = g X g, 
is a local diffeomorphism. Also, if L is a line in R2, the restriction 
G :  L -.... SI X SI is an immersion. Prove that if L has irrational 
slope, G is one-to-one on L. 

8. Check that the map (et + e-t et - e-t) t ·� 
2 ' 2 

' 

is an embedding. Prove that its image is one nappe of the hyperbola 
x2 _ y2 = I .  

*9. (a) Let XI ' . . .  ' XN be the standard coordinate functions on RN, and let 
X be a k-dimensional submanifold of RN. Prove that every point 
X E X has a neighborhood on which the restrictions of some k­
coordinate functions Xi" . . .  , Xi. form a local coordinate system. 
[HINT : Let e l ,  • • •  , eN be the usual basis for RN. As a linear algebra 
lemma, prove that the projection of Tx(X) onto the subspace span­
ned by ei" • • •  , eh is bijective for some choice of il ' . . .  , ik. Show 
that this implies that (Xi" . . . , Xi.) defines a local diffeomorphism 
of X into Rk at the point X.] 

(b) For simplicity, assume that XI " . .  ' Xk form a local coordinate 
system on a neighborhood V of X in X. Prove that there are smooth 
functions gk+ ] ,  . . .  , gN on an open set U in Rk such that V may be 
taken to be the set 

( a ] ,  . . .  , ah gk+](a), . . .  , gN(a)) E RN : a = (a l > ' "  , ak) E U}. 

That is, if we define g :  U --> RN-k by g = (gk+ l ' . . .  , gN)' then V 
equals the graph of g. Thus every manifold is locally expressible as 
a graph. 

*10. Generalization of the Inverse Function Theorem: Let f: X --> Y be a 
smooth map that is one-to-one on a compact submanifold Z of X. 
Suppose that for ali X E Z, 

is an isomorphism. Thenfmaps Z diffeomorphically ontof(Z). (Why ?) 
Prove that j; in fact, maps an open neighborhood of Z in X diffeomor­
phically onto an open neighborhood off(Z) in Y. Note that when Z is a 
single point, this specializes to the Inverse Function Theorem. [HINT: 
Prove that, by Exercise 5, you need only show fto be one-to-one on some 
neighborhood of Z. Now iff isn't so, construct sequences (a;) and {ba 
in X both converging to a point z E Z, with ai * bi but f(a;) = f(b,.). 
Show that this contradicts the nonsingularity of dlz.] 
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We continue our local analysis with the dimensionai case that 
will be most important for us, dim X > dim Y. If f: X ---> Y carries x to y, 

the strongest condition we can impose on its derivative dfx : TAX) ---> Ti Y) 
is surjectivity. If dfx is surjective,j is called a submersion at x. A map that is a 
submersion at every point is simply called a submersion. 

The canonical submersion is the standard projection of Rk onto RI for 
k > I, in  which (a l >  . . .  , ak) ---> (a l ,  . . .  , al)' As in the case of immersions, 
every submersion is locally canonical, up to diffeomorphism. 

Local Submersion Theorem. Suppose that f: X ---> Y is a submersion at x, 
and y = f(x). Then there exist local coordinates around x and y such that 
f(x I > • • •  , xk) = (x l ' • . .  , XI)' That is,j is locally equivalent to the canonical 
submersion near x. 

Prool The demonstration is just Iike the Iocai classification of immersions. 
Given any Iocai parametrization diagram 

f 
X-----) Y  

� l l � �(O) = x 
V'(O) = y 

g 
) V  U ------

we seek to modify g and apply the Inverse Function Theorem. As dga : Rk_, 
RI is surjective, by !inear change of coordinates in Rk we may assume it has 
l x k matrix (II I O). Now define G :  U ---> Rk by 

G(a) = (g(a), al+ l , ' " , ak), 

where a = (a l ,  . . .  , ak). The matrix of dGa is then [k , so G is a Iocal diffeo­
morphism at O. Thus G- I exists as a diffeomorphism of some open neigh­
borhood U' of O into U. By construction, g = (canonical submersion) o G, 
so g o  G- I is the canonical slIbmersion. Then the following square commutes : 

f 
X ) Y  

� o G-I l Canonica I l �  
U' ) V  Q.E.D. 

submersion 

An obviolls corolIary worth noting is that if f is a submersion at x, then 
it is actllally a submersion in a whoIe neighborhood of x. 
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One of the most valuable implications of the local classification theorem 
concerns the geometrie nature of solutions of functional equations. If y is a 
point of Y andf: X -> Y, the solutions of the equationf(x) = y comprise a 
subset of X that is called the preimage of y, denotedf- I (y). For generaI maps, 
the setf- I (y) need not be at all reasonable as a geometrie object. But suppose 
thatf is a submersion at a point x E f- I (y). Select local coordinates around 
x and y so that 

and y corresponds to (O, . . .  , O). Thus near X, j - I (y) is just the set of points 
(O, . . . , 0, Xl+ l' . • •  , xk). More precisely, let V denote the neighborhood of 
x on which the coordinate system (XI ' " . , xk) is defined. Then f- I (y) n V 
is the set of points where XI = O, . . .  , XI = O. The functions Xk+ I ' . . .  , XI 
therefore form a coordinate system on the set f - I (y) n V, which is a (rela­
tively) open subset off - I (y). (See Figure 1 - 1 2.) 

y 
Figure 1-12 

We are led to another definition. Fora smooth map ofmanifoldsf: X -> Y, 
a point y E Y is called a regular value for f if dfx : TxC X) -> Ty( Y) is surjec­
tive at every point X such that f(x) = y. The argument just given proves the 

Preimage Theorem. If y is a regular value off: X -> Y, then the preimage 
f - I (y) is a submanifold of X, with dim f- I (y) = dim X - dim Y. 

A point y E Y that is not a regular value of f is called a criticai value. 
The solution set {x :f(x) = y} may be rather complicated when y is a criticaI 
value. 

One absurd punctilio must be noted about the definition of regular 
values. Any point y E Y that does not belong to the image off automatically 
qualifies as a regular value. This is actually a strict logical consequence of the 
definition, but if stupidities like this annoy you, simply consider it as a special 
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definition. In fact, we shaIl occasionally want to find some point not belonging 
to an image f(x), and information about regular values will be helpful. 

For emphasis, let us reiterate the definition of regular values for each 
dimensionaI possibility. When dim X >  dim Y, the regularity of a value y 
means that f is a submersion at each preimage point x E f- I(y). When 
dim X = dim Y, it means that f is a local diffeomorphism at each preimage 
point. Finally, ifdim X < dim Y, then every point inf(X) is a criticaI value, 
and the regular values are those never hit by f The case where dim X = 
dim Y is especially important ; we urge you to work Exercise 7 to develop 
your intuition. 

How much simpler it is to create submanifolds by the use of the Preimage 
Theorem than tediously to construct local parametrizations. For example, 
consider the map f: Rk ---> R defined by 

f(x) = 1 X 12 = X! + . . .  + x�. 

The derivative dia at the point a = (al , . . .  , ak) has matrix (2al, . . .  , 2ak). 
Thus dia : Rk ---> R is surjective unless f(a) = 0, so every nonzero real number 
is a regular value of f In particular, we prove effortlessly that the sphere 
Sk-I =f- I ( 1 )  is a k - 1 dimensionaI manifold. 

A more powerful application ofthe theorem is provided by the orthogonal 
group O(n), the group of linear transformations of Rn that preserve distance. 
Now the space M(n) of ali n X n matrices is a manifold ; in fact (by rearrang­
ing entries along a single li ne), it is nothing but Rn'. O(n) is the group of matri­
ces that satisfy the equation AA' = I, where A' is the transpose of A and I 
is the identity matrix. We will now show that O(n) is a manifold. Note first, 
that for any matrix A, the matrix AA' is symmetric, for it equals its own 
transpose. The vector space S(n) of aIl symmetric n X n matrices is obviously 
a submanifold of M(n) diffeomorphic to Rk, where k = n(n + 1 )/2, and the 
mapf: M(n) ---> S(n), defined byf(A) = AA', is smooth. O(n) =f- I (I), so, in 
order to establish that the orthogonal group is a manifold, we need only 
show I to be a regular value of f Hence we compute the derivative of f at a 
matrix A .  By definition, 

diiB) = liOl f(A + sB) - i(A) 
.-0 s 

= lim (A + sB)(A + sB)' - AA' 
.-0 s 

. AA' + sBA' + sAB' + s2BB' - AA' = hm --'-----'-----'------
.-0 s 

= lim (BA' + AB' + sBB') 
.-0 

= BA' + AB'. 
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Is dfA : TAM(n) ---> Tf(A)S(n) surjective when A belongs to f- I(/) = O(n) ? By 
our identifications of M(n) and S(n) with Euclidean spaces, we have that 
TAM(n) = M(n) and Tf(A)S(n) = S(n). The matrix I is a regular value of f if 
and only if dfA : M(n) ---> S(n) is surjective for ali A E O(n). That is, for any 
C E S(n), there must exist a B E M(n) solving the equation 4fiB) = C, or 
BA' + AB' = C. As C is symmetric, we may write C = !-C + !-C', and then 
note that we can solve for B in the equation BA' = tC. Because A' A = I, 
multiplication on the right by A yields B = tCA .  Then, in fact, 

dfiB) = (!CA)A' + A(tCA)' = tC(AA') +- !(AA')C' = -±C -1- tC' = C, 

so we have found the desired matrix B. Thusfis a submersion at every A in 
f- I (I), and I is a regular value of f Hence O(n) is a submanifold of M(n) ; 
moreover, 

dim O(n) = dim M(n) - dim S(n) = n2 _ n(n + 1 )  
= n(n - l ) .  

2 2 

Note that O(n) is a group as well as a manifold. As an exercise, show that 
the group operations are smooth in the following sense : the multiplication 
map O(n) X O(n) ---> O(n) defined by (A, B) -> AB and the inversion map 
O(n) ---> O(n) defined by A ---> A - I are both smooth maps of manifolds. 
(HINT : Here A- I = A'.) A group that is a manifold, and whose group opera­
tions are smooth, is called a Lie group. 

Let us now consider some variants of the preceding materia l that will be 
useful in the next section. Here is a practical sort of problem : suppose that 
gl ' . . .  , g/ are smooth, real-valued functions on a manifold X of dimension 
k > l. Under what conditions is the set Z of common zeros a reasonable 
geometrie object ? We can answer this question easily by considering the map 

Since Z = g- I (O), Z is a submanifold of X if O is a regular value of g. 
We can reformulate the regularity condition for O directly in terms of the 

functions g/. Since each g/ is a smooth map of X into R, its derivative at a 
point x is a linear map d(gJx : 1\(X) ---> R; that is, d(g/)x is a linear func­
tional on the vector space Tx(X). Furthermore, you can quickly verify that 
dgx : Tx(X) ---> R/ is surjective if and only if the l functionals d(gl)x, . . .  , d(g/)x 
are linearly independent on Tx(X). We express this condition by saying the l 
functions gl , . . .  , g/ are independent at x. So now we can "translate" the 
Preimage Theorem into this language : 

I 
Proposition. If the smooth, real-valued functions gl , . . .  , g/ on X are inde-
pendent at each point where they alI vanish, then the set Z of common 
zeros is a submanifold of X with dimension equal to dim X - I. 
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It is convenient here to define the codimensiol1 of an arbitrary submanifold 
Z of X by the formula codim Z = dim X - dim Z. (Note that this depends 
not only on Z but on the surrounding manifold X as well.) Thus l indepen­
dent functions on X cut out a submanifold of codimension l. HistoricalIy, 
the study of zero sets of collections of functions has been of considerable 
mathematical interest. Classical algebraic geometry, for example, concerns 
the nature of sets cut out in Euclidean space by polynomials. 

Is the converse of the preceding proposition true ? That is, can every 
submanifold Z of X be "cut out" by independent functions ? We shall see that 
the answer is no (Exercise 20, Chapter 2, Section 3). However, we can get two 
useful partial converses : 

Partial Converse 1. If y is a regular value of a smooth map I: X -. Y, 
then the preimage submanifold/- 1 (y) can be cut out by independent functions. 

Proof. Just choose a diffeomorphism Il of a neighborhood W of y with a 
neighborhood of the origin in R/, where h(y) = O. Now set g = h o I and 
check that O is a regular value for g. Therefore the coordinate functions 
gl' . . .  , gJ wilI work. 

Parti al Converse 2. Every submanifold of X is local/y cut out by inde­
pendent functions. 

Prool. More specificalIy, let Z be a submanifold or codimension l, and 
let z be any point of Z. Then we claim that there exist I independent functions 
gl ' . . . , g/ defined on some open neighborhood W of z in X such that 
Z (ì W is the common vanishing set of the gl' (Here we are stating the 
converse to the proposition for the submanifold Z (ì W in the manifold 
w.) This converse folIows immediateJy from the Local lmmersion Theorem 
for the immersion Z -+ W; in fact, it is just Exercise 2 of the last section. 

In particular, taking Z to be an arbitrary Euclidean space, we note that 
every manifold is 10calIy definable by a collection of independent functions 
in Euclidean space. (Again, however, it is not true that alI manifolds can 
be globally cut out by independent functions. We shall see why later.) 

It is useful to note the folIowing 

Proposition. Let Z be the preimage of a regular value y E Y under the 
smooth map I: X -+ Y. Then the kernel of the derivative dj� : TAX) - -+ Ti Y) 
at any point x E Z is precisely the tangent space to Z, Tx(Z). 

Proof. Since/is constant on Z, dix is zero on Tx(Z). But dlx : Tx(X) -+ Ti Y) 
is surjective, so the dimension of the kernel of dix must be 

dim T/X) - dim TiY) = dim X - dim Y = dim Z. 
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Thus Tx(Z) is a subspace of the kernei that has the same dimension as the 
complete kernel ; hence Tx(Z) must be the kernel. Q.E.D. 

EXERCISES 

*1. lff: X -> Y is a submersion and U is an open set of X, show thatf(U) 
is open in  Y. 

*2. (a) lf X is compact and Y connected, show every submersionf: X -> Y 
is surjective. 

(b) Show that there exist no submersions of compact manifolds into 
Euclidean spaces. 

3. Show that the curve ( -> (/, (2, ( 3) embeds RI into R3 . Find two indepen­
dent functions that globally define the image. Are your functions in­
depend�nt on ali of R 3, or just on an open neighborhood of the image? 

4. Prove the following extension of Partiai Converse 2. Suppose that 
Z c X c Y are manifolds, and z E Z. Then there exist independent 
functions gl ' . . .  , g/ on a neighborhood W of z in Y such that 

Z (ì W = [y E W :  gl(Y) = O, . . .  , glY) = O} 
and X (ì W = [y E W :  gl(Y) = O, . . .  , gm(Y) = O}, 

where I - m is the codimension of Z in  X. 

5. Check that O is the only criticaI value of the mapf: R3 -> RI defined by 

f(x, y, z) = X2 + y2 - Z2. 

Prove that if a and b are either both positive or both negative, then 
f- I (a) and f - I (b) are diffeomorphic. [HINT: Consider scalar multiplica­
tion by ,Jbja on R3 .] Pictorially examine the catastrophic change in  
the topology of  f - I (e) as e passes through the criticaI value. 

6. More generally, let p be any homogeneous polynomial in k-variables. 
Homogeneity means 

Prove that the set of points x, where p(x) = a, is a k - l dimensionaI 
submanifold of Rk, provided that a * O. Show that the manifolds ob­
tained with a > O are all diffeomorphic, as are those with a < O. [HINT : 
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Use Euler's identity for homogeneous polynomials 

to prove that O is the only criticai value of p.] 

*7. (Stack of Records Theorem.) Suppose that y is a regular value of 
f: X --> Y, where X is compact and has the sa me dimension as Y. Show 
that f- I (y) is a finite set {XI " . . , xN} . Prove there exists a neighbor­
hood U of y in Y such that f- I (U) is a disjoint union VI U ·  . .  U V N' 

where Vi is an open neighborhood of Xi and f maps each VI diffeo­
morphically onto u. [HINT : Pick disjoint neighborhoods Wl of XI that 
are mapped diffeomorphically. Show thatf(X - U Wl) is compact and 
does not contain y.] See Figure 1 - 13 .  

Figure 1-13 

8. Let 

be a polynomial with complex coefficients, and consider the associated 
map z --> p(z) of the complex piane C --> C. Prove that this is a sub­
mersion except at finitely many points. 

9. Show that the orthogonal group O(n) is compact. [HINT :  Show that if 
A = (al}) is orthogonal, then for each i, I:} al} = I .] 
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lO. Verify that the tangent space to O(n) at the identity matrix l is the vector 
space of skew symmetric n X Il matrices-that is, matrices A satisfying 
A' = -A.  

11. (a) The n X n matrices with determinant + l form a group denoted 
SL(n). Prove that SL(n) is a submanifoId of M(n) and thus is a Lie 
group. [HINT : Prove that O is the onIy criticaI vaIue of det : 
M(n) -> R. In  fact, if det (A) * O, then show that det is aIready a 
submersion when restricted to the set {lA, l > O}. Remark : This 
is realIy a speciaI case of Exercise 5.] 

(b) Check that the tangent space to SL(n) at the identity matrix consists 
of alI matrices with trace equaI to zero. 

12. Prove that the set of alI 2 X 2 matrices of rank I is a three-dimensionaI 
submanifoId of R4 = M(2). [HINT : Show that the determinant function 
is a submersion on the manifoId of nonzero 2 X 2 matrices M(2) - {O}.] 

13. Prove that the set of m X n matrices of rank r is a submanifoId of Rmn of 
of codimension (m - r)(n - r). [HINT : Suppose, for simpIicity, that an 
m X n matrix A has the form 

r n-T 

A = r ( _�_!_�_ .) , 
m-r D :  E 

wher,e the r X r matrix B is nonsinguIar. PostmuItiply by the nonsin­
guIar matrix 

---: - - - - - - - -
( I i  -B-IC ) 

O :  l 

to prove that rank (A) = r if and only if E - DB- I C  = O.] 

§5 Transversal ity 

We have observed that the soIutions of an equation I(x) = y 
form a smooth manifoId, provided that y is a regular value of the map 
I: X -> Y. Consider, now, sets of points in X whose functional values are. 
constrained, not necessariIy to be a constant y, but to satisfy an arbitrary 
smooth condition. Thus assume Z to be a submanifold of Y, and examine the 
set of solutions of the relation I(x) E Z. When can we be assured that this 
solution set, the preimage l- l  (Z), is a tractable geometrie object ? This ques­
tion wiII lead us to define a new differential property, an extension of the 
notion of regularity, which wiII become the major theme of the book. 
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Whether I- I  (Z) is a manifold is a local matter. That is, it is a manifold if 
and only if every point x E I- I (Z) has a neighborhood U in X such that 
l- l (Z) n U is a manifold. This observation allows us to reduce study of the 
relation/(x) E Z to the simpler case we have already examined, where

'
Z is a 

single point. For if y = I(x), we may write Z in a neighborhood of y as the 
zero set of a collection of independent functions gl , . . .  , gl' l being the codi­
mension of Z in Y. Then near x, the preimage l- l (Z) is the zero set of the 
functions gl o J, . . . , gl o f Let g de note the submersion (g" . . .  , gl) 
defined around y (Figure 1 - 1 4). Now to the map g o I: W ---> R' we may apply 
the results already obtained ; (g o I)- I  (O) is guaranteed to be a manifold when 
O is a regular value of g o f 

y RI 
Figure 1-14 

Although the map g is rather arbitrary, the condition that O be a regular 
value of g o I may easily be reformulated in terms of I and Z alone. Since 

d(g o I)x = dgy o dix, 

the linear map d(g o f)x : Tx(X) ---> R' i s  surjective if and only if dgy carries the 
image of dix onto R/. But dgy: Ty( Y) ---> R' is a surjective linear transforma­
tion whose kernel is the subspace Ty(Z). Thus dgy carries a subspace of Ty( Y) 
onto R' precisely if that subspace and Ty(Z) together span all of Ty( Y). We 
conclude that g o I is a submersion at the point x E I- I (Z) if and only if 

Image (dlJ + TiZ) = TiY)· 

We have been led inexorably to this equation by our investigation. The 
map I is said to be transversal to the submanifold Z, abbreviated I ifi Z, if 
the equation holds true at each point x in the preimage of Z. We have proved 

Theorem. If the smooth map I: X ---> Y is transversal to a submanifold 
Z c Y, then the preimage l- l (Z) is a submanifold of X. Moreover, the 
codimension of/- 1 (Z) in X equals the codimension of Z in Y. 
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With respect to the assertion about codimension, note that Iocally we 
have writtenf- I (Z) as the zero set of l independent functions gl o f, . . . , g/ o f 
Therefore the codimension of f- I (Z) in  X is I, which was orginally set to 
be the codimension of Z in Y. 

When Z is just a single point y, its tangent space is the zero subspace of 
T/ Y). Thus f is transversaI to y if dfx[Tx(X)] = Ty( Y) for alI x E f- I (y), 
which is to say that y is a regular value of f So transversality includes the 
notion of regularity as a special case. 

For a very simple example of transversality, consider the mapf: R I -> R2 
defined by f(t) = (O, t), and let Z be the x axis in R2 (Figure 1 - 1 5). The map 
g :  RI -> R2 defined by g(t) = (t, t2), however, fails to be transversal to Z 
(Figure I - I 6). 

--------�-+----------- z 

Figure 1-15 

Figure 1·16 

The most important and readily visualized special situation concerns the 
transversality of the inclusion map i of one submanifold X c Y with another 
submanifold Z c Y. To say a point x E X belongs to the preimage i- I (Z) 
simply means that x belongs to the intersection X n Z. Also, the derivative 
dix : Tx(X) -> Tx( Y) is merely the inclusion map of Tx(X) into Tx( Y). So 
i m Z if and only if, for every x E X n z, 

Notice that this equation is symmetric in X and Z. When it holds, we shall 
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say that the two submanifolds X and' Z are transversal, and write X m z. The 
theorem above specializes to 

Theorem. The intersection of two transversal submanifolds of Y is again a 
submanifold. Moreover, 

codim (X () Z) = codim X + codim Z. 

The additivity of codimension (which is derived by trivial arithmetic from 
the codimension assertion of the previous theorem) is absolutely natura\. 
Around a point x belonging to X () Z, the submanifold X is cut out of Y 
by k = codim X independent functions, and Z is cut out by l = codim Z 
independent functions. Then X () Z is locally just the vanishing set of the 
combined collection of k + l functions ; that these k + l functions are to­
gether independent is exactly the transversality condition. 

One must remember that the transversaIity of X and Z aiso depends on 
the ambient space Y. For exampIe, the two coordinate axes intersect trans­
versally in R2, but not when considered to be submanifolds of R3. In generaI, 
if the dimensions of X and Z do not add up to at Ieast the dimension of Y, 
then they can onIy intersect transversally by not intersecting at ali. For 
exampie if X and Y are curves in R3, then X m Y implies X () Y is empty. 
For some exampie see Figures 1 - 1 7  to 1-19. In each case, examine the intersec­
tion with the theorem in mind. 

Curves in R2 

Transversal Nontransversal 

Curves and Surface in R3 

Transversal Nontransversal 

Figure 1-17 
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Nontransversal 
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surlaces in 1\3 

Nontransversal 

Nontransversal 

Figure 1-18 

Nontransversal 

Figure 1-19 

Nontransversal 
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Transversality wiII be fundamental to the topological theory of subsequent 
chapters, so be sure to devote some time now toward developing your intui­
tion. The bes t procedure is probably just to draw several dozen pictures of 
intersecting manifolds in 2- and 3-space. You wiII find that transversal in­
tersections are rather prosaic but very dependable and cIean. But see how 
utterIy bizarre nontransversal intersections can be-and examine your con­
structions in order to understand precisely where transversality is violated. 
We have started you off with a series of tame, but typical, examples. 

EXERCISES 

1. (a) Suppose that A :  Rk -> Rn is a linear map and V is a vector sub­
space of Rn. Check that A ?R V means just A(Rk) + V = Rn. 

(b) If V and W are linear subspaces of Rn, then V ?R  W means just 
V +  W = Rn. 

2. Which of the foIIowing linear spaces intersect transversaIIy ? 
(a) The xy piane and the z axis in R 3 •  
(b) The xy piane and the piane spanned by {(3, 2, O), (O, 4, - l )} in  R 3 •  
(c) The piane spanned by {( l ,  O ,  O), (2, I ,  O)} and the y axis in R3. 
(d) Rk X {O} and {O} X RI in Rn. (Depends on k, l,  n.) 
(e) Rk X {O} and RI X (O} in Rn. (Depends on k, l, n.) 
(f) V X (O} and the diagonal in V X V. 

. 

(g) The symmetric (At = A) and skew symmetric (At = -A) matrices 
in M(n). 

3. Let VI ' V2, V3 be linear subspaces of Rn. One says they have "normal 
intersection" if VI ?R (Vj (ì Vk) whenever i "* j and i "*  k. Prove that 
this holds if and only if 

*4. Let X and Z be transversal submanifolds of Y. Prove that if 
y E X (ì Z, then 

("The tangent space to the i ntersection is the intersection of the tangent 
spaces.") 

*5. More generaIIy, let I: X -> Y be a map transversal to a submanifold 
Z in Y. Then W =1- 1 (Z) is  a submanifold of X. Prove that TxC W) is 
the preimage of Tf(x)(Z) under the linear map dix : Tx(X) -> TfCx)( Y)' 
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("The tangent space to the preimage of Z is the preimage of the tangent 
space of Z.") (Why does this imply Exercise 4 ?) 

6. Suppose that X and Z do not intersect transversally in Y. May X n Z 
stili be a manifold ? If so, must its codimension stili be codim X + 
codim Z? (Can it be ?) Answer with drawings. 

*7.- Let X L y .!- Z be a sequence of smooth maps of manifolds, and as­
sume that g is transversal to a submanifold W of Z. Show f m g- I  (W) 
if and only if g o f m w. 

8. For which values of a does the hyperboloid defined by X2 + y2 - Z2 = I 
intersect the sphere X2 + y2 + Z2 = a transversally ? What does the 
intersection look like for different values of a ?  

9. Let V be a vector space, and let à be the diagonal of V X V. For a 
linear map A :  V -> V, consider the graph W = {(v, Av) : v E V}. Show 
that W m à if and only if + l is not an eigenvalue of A .  

lO. Letf: X -> X be a map with fixed point x; that is, J(x) = x. If + l is 
not an eigenvalue of dix : Tx(X) -> Tx(X), then x is called a Lefschetz 
fixed point of f f is called a Lefschetz map if ali its fixed points are 
Lefschetz. Prove that if X is compact and/is Lefschetz, then f has only 
finitely many fixed points. 

11. A theorem of analysis states that every cJosed subset of Rk is  the zero 
set of some smooth functionf: Rk -----> R. Use this theorem to show that 
if C is any cJosed subset of Rk, then there is a submanifold X of Rk+ 1 such 
that X n Rk = C. [Rere we consider Rk as a submanifold of Rk+ 1 via 
the usual incJusion (al , . . .  , ak) -----> (a l , . . . , ak, O).] Because cJosed sets 
may be extremely bizarre, this shows how bad nontransversal intersec­
tions can be. 

§6 H omotopy and Stabil ity 

A great many properties of a map are not aItered if the map is 
deformed in a smooth manner. Intuitively, one smooth map Il : X --> Y is a 
deformation of another lo : X --> Y if they may be joined by a smoothly 
evolving family ofmapslt : X --> Y. (See Figure 1 -20.) The precisely formula­
ted definition is one of the fundamental concepts of topology. Let 1 denote 
the unit interval [O, l] in R. We say that/o and/l are homotopic, abbreviated 
lo ,.., Il , if there exists a smooth map F: X x 1 -->  Y such that F(x, O) = lo (x) 
and F(x, l )  =11 (x). F is called a homotopy between lo and Il . Homotopy is 
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Figure 1-20 

an equivalence relation on smooth maps from X to Y (see Exercise l) ,  and 
the equivalence cIass to which a mapping belongs is its homotopy c/ass. In 
order to recover the smoothly evolving family of maps joiningio and il , just 
define/, : X -> Y by /,(x) = F(x, t). 

In the real world of sense perceptions and physical measurements, no 
continuous quantity or functional relationship is ever perfectIy determined. 
The only physically meaningful properties of a mapping, consequentIy, are 
those that remain valid when the map is slightIy deformed. Such properties 
are stable properties, and the collection of maps that possess a particular 
stable property may be referred to as a stable c/ass of maps. Specifically, a 
property is stable provided that whenever io : X -> Y possesses the property 
andi, : X -> Y is a homotopy of io , then, for some f > 0, each/, with t < f 
al so possesses the property. 

Consider, for example, curves in the piane, smooth maps of RI into R2. 
The property that a curve pass through the origin is not stable, since a small 
wiggle can immediately distort any such curve to avoid O. (See Figure 1 -2 1 ). 
Nor is the property of intersecting the x axis stable (Figure 1 -22). However, 
transversal intersection with the x-axis is a stable property, as you can easily 

Figure 1-21 

x axis 

Figure 1-22 
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Figure 1-23 

see (Figure 1 -23). This situation is qui te generaI. The naive point-set condi­
tion of intersection is seldom stable, and therefore it is meaningless in the 
physical world. Transversality, a notion that at first appears unintuitively 
formaI, is aH we can really experience. 

We prove that ali the differential properties of maps X ---+ Y discussed 
so far are stable, provided thàt X is compact. 

StabiIity theorem. The foHowing c1asses of smooth maps of a compact 
manifold X into a manifold Y are sta bI e c1asses : 
(a) local diffeomorphisms. 
(b) immersions. 
(c) submersions. 
(d) maps transversal to any specified submanifold Z c Y. 
(e) embeddings. 
(f) diffeomorphisms. 

The notion of stability provides insight into transversality. For example, 
why can two curves in R3 never intersect transversally except when they do 
not intersect at ali ? The formai answer is that 1 + 1 < 3, but there is a 
more geometrie reason. By a small deformation of either curve, one can 
abruptIy puH the two entirely apart ; their intersection is not stable (Figure 
1 -24). 

The same principle explains the real reason for aH automatic dimensionai 
exclusions of the transversality definition. If dim X + dim Z < dim Y, and 

- - - - - --

Figure 1-24 
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I: X -----> Y hits Z, then one can perturb I SO as to pull it off Z immediately. 
Thus no map I can stably intersect Z. 

Furthermore, other nontransversai intersections, in dimensions not arith­
metically prohibited, can be understood from the same point of view, as the 
diagrams in Figure 1 -25 illustrate. 

- - - - - --

Figure 1-25 

Proof of Stability Theorem. The stability of the first four classes is proven 
in the same way. Locai diffeomorphisms are just immersions in the speciai 
case when dim X = dim Y, so we start with class (b). If I, is a homotopy of 
the immersion /o,  we must produce an E > O such that d(J,)x i s  injective for 
all points (x, t) in X x [O, E) c X x I. The compactness of X implies that 
any open neighborhood of X X fO} in X X I contains X X [O, E] if E is suffi­
ciently small. Therefore we need only prove that each point (xo, O) has a 
neighborhood U in  X X I such that d(f,)x is injective for (x, t) E U. Since 
this assertion is IocaI, we need only prove it when X is an open piece of Rk 
and Y an open piece of RI. The injectivity of d(fo)xo implies that its l X k 
Jacobian matrix 

contains a k X k submatrix with nonzero determinant. But each parti al 
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as a function on X x I, is continuous. Because the determinant function is  
also continuous, that same k X k submatrix must be nonsingular for ali 
points (x, t) in a neighborhood of (xo, O) as cIaimed. 

The proof of cIass (c) is virtually identical. For (d), recall that transversality 
with respect to Z may be locally translated into a submersion condition, so 
the proof of (d) is quite similar. 

For (e), we need now only show that if lo is one-to-one, so is I, if t is 
small enough. This proof is a relative of Exercise IO, Section 3. Define a 
smooth map G :  X X 1 -----> Y X I by G(x, t) = (f,(x), t). Then if (e) is false, 
there is a sequence ti -----> O and distinct points Xi' Yi E X such that G(Xf, ti) = 
G(YI, ti)' As X is compact, we may pass to a subsequence to obtain conver­
gence Xi -----> Xo, Yi -----> Yo. Then 

G(Xo, O) = lim G(Xi, ti) = lim G(YI, t;) = G(yo, O). 

But G(xo, O) = lo(xo) and G(yo. O) = 10(Yo), so if/o is injective, Xo must equai 
Yo' Now, locally, we may work i n  EucIidean space. The matrix of dG(X • .  OI is 
just 

: a l 
I I 

d(fo)x. ! 
I I 
: al - - - - - - - - -1- - - - -

O . . .  O ! 1 

where the numbers al are not of interest. Since d(fo)x. is injective, its matrix 
must have k independent rows. Thus the matrix of dG(x • .  OI has k + I in­
dependent rows, so dG(x • .  OI must be an injective linear map. Consequently, 
G is an immersion around (xo, O) and thus must be one-to-one on some neigh­
borhood of (xo, O). But for Iarge i, both (Xi> ti) and (Yi, ti) belong to this 
neighborhood, a contradiction. 

Finally, we leave (f) for Exercise 8. Q.E.D. 

EXERCISES 

*1. Suppose that 10'/1 : X -----> Y are homotopic. Show that there exists a 
homotopy F :  X X 1 -----> Y such that F(x, t) = lo (x) for ali t E [O, i] 
and F(x, t) =/1(x) for ali t E [i, l ] .  [HINT : Find a smooth function 
p :  R -----> R such that p(t) = O if t < i, p(t) = I if t > i- Now let F be 
any homotopy and set F(x, t) = F(x, p(t» .] 

*2. Prove that homotopy is an equivalence relation : if l ''' g and g '" h, 
then/ '" h. [HINT : To join the homotopies together, you need Exercise 
l .  Why?] 
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*3. Show that every connected manifold X is arcwise connected: given any 
two points xo, x I E X, there exists a smooth curve I: 1---> X with 1(0) 
= xO, I(I )  = XI · [HINT: Use Exercise 2 to show that the relation "xo 
and X I can be joined by a smooth curve" is an equivalence relation on 
X, and check that the equivalence cIasses are open.] 

4. A manifold X is contractible if  its identity map is homotopic to some 
constant map X ---> {x}, x being a point of X. Check that if Xis contract­
ible, then ali maps of an arbitrary manifold Y into X are homotopic. 
(And conversely.) 

5. Show that Rk is contractible. 

6. A manifold X is simply connected if it is connected and if every map of 
the circIe SI into X is homotopic to a constant. Check that ali contract­
ible spaces are simply connected, but convince yourself that the converse 
is false. (Soon we shall develop tools that easily prove the converse 
false.) 

*7. Show that the antipodal map x ---> -x of Sk -> Sk is homotopic to the 
identity if k is odd. HINT : Start off with k = l by using the linear maps 
defined by 

(C?S nt -sin 1t1) . 
sm nt cos nt 

8. Prove that diffeomorphisms consti tute a stable cIass of mappings of 
compact manifolds ;  that is, prove part (f) of the Stability Theorem. 
[HINT : Reduce to the connected case. Then use the fact that local diffeo­
morphisms map open sets into open sets, plus part (e) of the theorem.] 

9. Prove that the Stability Theorem is false on noncompact domains. 
Here's one counterexample, but find others yourselfto understaf!d what 
goes wrong. Let p :  R ---> R be a function with p(s) = l ifl s I < l ,  p(s) = 
O if I s i > 2. Define j, : R -> R by j,(x) = xp(tx). Verify that this is a 
counterexample to ali six parts of the theorem. [For part (d), use Z = 
{O}.] 

* 10. A delormation of a submanifold Z in Y is a smooth homotopy i, : Z -> 
Y where io· is the incIusion map Z -> Y and each i, is an embedding. 
Thus Z, = i,(Z) is a smoothly varying submanifold of Y with Zo = Z. 
Show that if Z is compact, then any homotopy i, of its incIusion map is 
a deformation for small t. Give a counterexample in the non compact 
case (other than the triviality where dim Z = dim Y). 
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11. We shall have use for a direct generalization ofthe notion of homotopy. 
Suppose that I, : X -> Y is a family of smooth maps, indexed by a 
parameter s that varies over a subset S in some EucIidean space. We 
say that {f,} is a srnooth larnily of mappings if the map F :  X x S -> Y, 
defined by F(x, s) = I,(x), i s  smooth. Check that the Stability Theorem 
generalizes immediately to the following : if lo belongs to any of the 
classes listed, then there exists an f > O such that/, belongs to the same 
cIass if I so - s i  < f. 

§7 Sard's Theorem and M orse Functions 

The preimage of a regular value of the smooth map I: X -> Yis  
a nice submanifold of X. This simple fact has led us to  a generalization ofthe 
notion of regularity-namely, transversality-which we hope will be a key to 
decipher some of the secrets of the topology of manifolds. But the regularity 
condition on values of/is a strong one. Perhaps the condition is so strong that 
regular values occur too rarely for our Preimage Theorem to be of much use. 
In fact, precisely the opposite is true, as guaranteed by the second deep 
theorem to be borrowed from advanced calculus. 

Sard's Theorem. If/: X - >  Y is any smooth map of manifolds, then almost 
every point in Y is a regular value of f 

The statement may sound vague but that will be rectified. First, we decIare 
an arbitrary set A in RI to have rneasure zero if it can be covered by a count­
able number of rectangular solids with arbitrary small total volume. Of 
course, a rectangular solid in RI is just a cartesian product of l intervals in 
R I , and its volume is the product of the lengths of the l intervals. Thus A has 
measure zero if, for every f > O, there exists a countable collection {SI ' 
S2' . . .  } of rectangular solids in RI, such that A is contained in  the union of 
the SI and 

� 
::E voI (S/) < f. 
1 = 1  

The concept of  measure zero is extended to  manifolds via Iocai parame­
trizations. An arbitrary subset C c Y has rneasure zero if, for every Iocai 
parametrization '" of Y, the preimage ",- I (C) has measure zero in EucIidean 
space. The condition really need not be verified for every parametrization, 
for it is not difficuIt to show that if A c RI has measure zero and g : RI -> RI 
is a smooth map, then g(A) has measure zero. (Proof in Appendix A.) It 
follows that C has measure zero, provided that it can be covered by the images 
of some collection of Iocal parametrizations "'" satsifying the condition that 
VI;; I (C) has measure zero for each (1,. 
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The assertion in Sard's theorem that "almost every point" of Yis a regular 
value for X means that the points that are not regular values constitute a set 
of measure zero. Since the complement of the regular values are the criticai 
values, Sard's theorem may be restated : 

Sard's Theorem (Restated). The set of criticai values of a smooth map of 
manifolds/: X ----> Y has measure zero. 

The proof of Sard's theorem has been relegated to Appendix A, because 
it has a distinctly different flavor from the topological matters to which the 
theorem will be applied. 

Not surprisingly, no rectangular solid in Rl has measure zero, and thus 
none can be contained in a set of measure zero. (A proof of this remark may 
also be found in Appendix A.) Consequently, no set of measure zero in  a 
manifold Y can contain a non-vacuous open set. So we observe the following 
corollary : 

Corollary. The regular values of any smooth map/: X ----> Y are dense in Y. 
In fact, if ft : Xi ----> Y are any countable number of smooth maps, then the 
points of Y that are simultaneously regular values for ali of the ft are dense. 

The second statement is true because the union of any countable collec­
tion {C. ,  C2, • • •  } of sets of measure zero stili has measure zero. Given f > 0, 
choose for each i a sequence of rectangular solids {Si. ,  S�, . . .  } that cover Ci' 
and such that 

� 
f fii voi (SD < 2i ' 

Then the countable collection {SD covers U Ci and has total volume less than 

Now, for the corollary, just take CI to be the set of criticai points of ft. 
We introduce two new words for concepts already defined. If I: X ----> Y 

is a smooth map, a point x E X is a regular point of I if dix : Tx(X) ----> Ti Y) 
is surjective ; one also says that I is  regular at x (which thus means the 
same as "/ is a submersion at x"). If dfx is not surjective, x is a criticai point 
of f These terms are convenient and quite standard, but, unfortunately, they 
are easily confused with the related terms "regular value" and "criticai value." 
Caveat: keep them straight! Regular and criticai values live in Y; regular and 
criticai points live in X. [Note: y is a regular value if every x E f - · (y) is a 
regular point. y is a criticai value if so much as one x E I - · (Y) is a criticai 
point.] 
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In particular, remember that Sard's theorem says that the set of criticaI 
values of a map I: X -----> Y has measure zero in Y, not that the set of criticaI 
points has measure zero in X. For a trivial reminder, examine any constant 
map of X into Y; if dim Y > O, the set of criticaI points is ali of X and thus 
is certainly not of measure zero. 

Let us illustrate the use of Sard's theorem with a typical application, the 
final installment in our discussion of optimal local behavior of mappings. 
Here we consider only smooth functions on a manifold X-that is, maps 
I: X -----> R. At a particular x E X, I is either regular or d/x = O. If it is reg­
ular, then we can choose a coordinate system around x so that I is simply 
the first coordinate function. Thus we really know all about the Iocal behavior 
of/at regular points, at least up to diffeomorphism. But what can we say at 
criticaI points ? Topological considerations often compel maps to have criticaI 
points. For example, if X is compact, any function on X must have a maxi­
mum and minimum. But if/(x) is an extreme value, then obviously I cannot 
be a coordinate function near x, so d/x must be zero. Thus on compact 
domains every function has at least two criticaI points (except for the case 
X = {one point}). 

At least there is a "best form" for functions around criticaI points. Let 
us first work in  Rk, supposing/ to have a criticaI point at x. You probably 
recall from caIculus that when dix = O-that is, when all the partials 
(a/fa x!) ,  . . .  , (a/fa xk) vanish at x-then rather straightforward tests exist for 
determining whether Ihas a maximum, a minimum, or a saddle at the point 
x. These tests involve the second derivatives of I, and they provide definite 
information as long as the Hessian matrix of second partials 

is nonsingular at x. If the Hessian is nonsingular at the criticaI point x, one 
says that x is a nondegenerate criticai point of f 

Nondegenerate criticaI points are reasonable in at least one sense : they 
are isolated from the other criticaI points of f To see · this, define a map 
g :  Rk -----> Rk by the formula 

Then dix = O if and only if g(x) = O. Moreover, in the standard matrix rep­
resentation, the derivative dgx is nothing but the Hessian of I at x. So if x 
is nondegenerate, then not only does g(x) = O but g maps a neighborhood of 
x diffeomorphically onto a neighborhood of O as well. Thus g can be zero at 
no other points in this neighborhood, and so I has no other criticaI points 
there. 



42 CHAPTER 1 MANIFOLOS A!'I0 SMOOTH MAPS 

The local behavior of a function at a nondegenerate criticai point is com­
pletely determined, up to diffeomorphism, by a theorem called the Morse 
Lemma. This "canonical form" theorem is analogous in spirit to the local 
cIassification theorems for immersions and submersions ; it explicitIy specifies 
the function f, in  an appropriate coordinate system, in terms of the Hessian 
matrix of second derivati ves at the criticai point. 

Morse Lemma. Suppose that the point a E Rk is a nondegenerate criticai 
point of the function f, and 

is the Hessian of/at a. Then there exists a local coordinate system (X. ,  . . . , Xk) 
around a such that 

near a. 
Thus every function near a nondegenerate cri�ical point is IocalIy equiva­

Ient to a quadratic polynomial, the coefficients of which constitute the Hes­
siano Obviously, the Morse Lemma, which we will not prove or use, is much 
stronger than the assertion that the Hessian determines whether/has a maxi­
mum or a minimum at a. (See Exercise 1 1 .) 

The concept of nondegeneracy makes sense on manifolds, via local para­
metrizations. Suppose that/: X --> R has a criticai point at x and that c/J is a 
Iocal parametrization carrying the origin to x. Then O is a criticai point for 
the function l o  c/J, for d(f o c/J)o = dix o dc/Jo = O. We shall decIare x to be 
nondegenerate for I if O is  nondegenerate for l o  c/J. The difficulty with such 
Iocal definitions is that one must always prove the choice of parametrization 
to be unimportant. In this case, if c/J I and c/Jz are two choices, then l o  c/J I = 
(f o c/Jz) o "', where '" = c/J"2 1 o c/J l .  Thus we must prove 

Lemma. Suppose that I is a function on Rk with a nondegenerate criticaI 
point at O, and '" is a diffeomorphism with ",(O) = o. Then/ o  '" al so has a 
nondegenerate criticaI point at o. 

Proo! We simply compute with the explicit form of the chain rule in Rk. 
Letj' =10 "', and Iet H and H' be the Hessians at O of/andj', respectively. 
We must show that det (H) * O implies det (H') * O. Now the chain rule says 

Thus 
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Since O is a criticai point of J, each term in the second sum is zero. So in  the 
notation of matrix multiplication, H' = (dlflo)'H(dlflo), where t means "trans­
pose." Now det (dlflo) "* O, since lfI is a diffeomorphism, and det (dlflo)' = 
det (dlflo)' Thus the multiplicative rule for determinants shows that det (H') 
"* O if òet (H) "* O. Q.E.D. 

Although the verificati.on that nondegeneracy is  defined on manifolds 
was less than elegant, the concept is of great value. There are several closely 
interrelated reasons for its significance. First, the Morse Lemma completely 
describes the behavior of functions at nondegenerate points, making detailed 
constructions possible. Second, f!lnctions whose criticai points are ali non­
degenerate-called Morse functions-tell a great deal about the topology of 
their domain manifolds. We shall only be able to illustrate this marvelous 
subject in two comparatively pedestrian instances (Appendix A, to be read in 
conjunction with the second chapter, and an exercise in  Chapter 3, Section 
5). But Marston Morse has made a delightful film [4], describing the two­
dimensionai situation intuitively. Another fine reference is lohn Milnor's 
book Morse Theory [3] ; you will certainly want to read this book at some 
point, but we especially urge you to read soon the informai introduction in  
the first three pages. (Milnor also presents a simple proof of the Morse Lem­
ma.) 

A third reason for the importance of nondegeneracy is that it is the com­
mon situation ; the occurrence of degenerate criticai points is really quite 
rare. In fact, we will deduce from Sard that, in a reasonable sense, the vas t 
majority of functions are actually Morse functions. Suppose that the mani­
fold X sits in RN, and let x l ' . • •  , XN be the usual coordinate functions on RN. 
If f is a function on X and a = (al , . . .  , aN) is an N-tuple of numbers, we 
define a new function fa on X by 

The result we allude to is the following 

Theorem. No matter what the function f: X -> R i s, for almost every a E 
R" the function fa is a Morse function on X. 

As earlier, the phrase "almost every" means that the values a for which 
the assertion is false only constitute a set of measure zero. 

First we prove the result in Rk. 

Lemma. Letfbe a smooth function on an open set U ofRk. Then for almost 
ali k-tuples a = (a"  • . .  , ak) in Rk, the function 

fa = f + a ,x, + . . .  + akXk 

is a Morse function on U. 
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Proo! We again use the map g :  U ----> Rk defined by 

Now the derivative offa at a point p is represented in coordinates by 

(dfa)p = (:�� (p), . . . , :�: (p)) = g(p) + a. 

Thus p is a criticai point of fa if and only if g(p) = - a. Moreover, since fa 
andf have the same second partials, the Hessian off at p i s  the matrix (dg)r 
Now assume that -a is a regular value for g. Then whenever g(p) = - a, 
(dg)p is nonsingular. Consequently, every criticai point offa is nondegenerate. 
But Sard implies that -a is a regular value of g for almost ali a E Rk. 

Q.E.D. 

Proof of Theorem. Suppose that x is any point in X and that x l' . • .  , XN 
are the standard coordinate functions on RN. Then the restrictions of some k 
of these coordinate functions Xj" • • •  , X  ... to X constitute a coordinate system 
in  a neighborhood of x. This was an exercise, but here is a proof. If ifJ l '  . . . , ifJN 
is the standard basis of linear functionals on RN, then some k of these 
ifJl,' • . .  , ifJ ... are linearly independent when restricted to the vector subspace 
T x(X). Since the derivative of the coordinate function Xi : RN ----> R is just the 
linear functional ifJj : RN ----> R, the derivative at x of the restriction of Xi to 
X is the restriction of ifJj to TxCX). Therefore the linear independence of 
ifJj" . . .  , ifJj. on T x(X) implies that the map (Xi" . . . , X ... ) : X ----> Rk is a local 
diffeomorphism at x. 

Therefore we can cover X with open subsets U,. such that on each (J, some 
k of the functions XI '  • • .  , XN form a coordinate system. Moreover, by the 
second axiom of countability (se e the "Straight Forward"), we may assume 
there are only countably many U,.. 

Now suppose that U,. is one of these sets, and, for convenience, assume 
that (XI ' . . •  , xk) is a coordinate system on U,.. For each N - k tuple c = 
(Ck+ I , • . •  , cN), consider the function 

The lemma implies that for almost ali b E Rk, the function 

is a Morse function on U,.. Now Jet S,. be the set of points a in RN such that 
fa is not a Morse function on U,.. We have just shown that each "horizontal 
slice" S,. n Rk x {c} has measure zero (considered as a subset of Rk). lt 



§7 Sard's Theorem and Morse Functions 45 

should seem believable to you that any reasonable subset of RN whose hori­
zontal slices ali have Rk-measure zero must itself have measure zero i n  RN; 
this is a form of "Fubini's theorem," proved in Appendix A. Granting it for 
the moment, we conclude that every S", has measure zero in RN. 

Obviously, a function has a degenerate criticaI point on X if and only if 
it has one in some U",. Thus the set of N-tuples a for whichfa is  not a Morse 
function on X is the union of the S",. Since a countable union of sets of 
measure zero stili has measure zero, we are finished. Q.E.D. 

EXERCISES 

1. Show that Rk is of measure zero in R/, k < l. 

2. Let A be a measure zero subset of Rk. Show that A x RI is of measure 
zero in Rk+l. (This implies Exercise l .  How ?) 

3. Suppose that Z is a submanifold of X with dim Z < dim X. Prove that 
Z has measure zero in X (without using Sard !). 

4. Prove that the rational numbers have measure zero in Rl , even though 
they are dense. 

5. Exhibit a smooth map f: R -> R whose set of criticai values is dense. 
[HINT : Write the rationals in a sequence '0' '1 ' . . . .  Now construct a 
smooth function on [i, i + I ]  that is zero near the endpoints and that 
has 'j as a criticai value (Figure 1 -26).] 

i + 1  
Figure 1-26 

*6. Prove that the sphere Sk is simple connected if k > l . 
[HINT : If f: SI -> Sk and k >  l ,  Sard gives you a point p i f(SI ). 
Now use stereographic projection.] 

7. When dim X < dim Y, Sard says that the image of any smooth map 
f: X -> Y has measure zero in Y. Prove this "mini-Sard" yourself, 
assuming the fact that if A has measure zero in RI and g : RI -> RI is 
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smooth, then g(A) al so has measure zero. [HINT : Reduce to the case of 
a map 1 of an open set U c Rk into RI. Consider F: U X RI-k ----> RI 
defined by F(x, t) = I(x).] 

8. Analyze the criticaI behavior of the following functions at the origino 
Is the criticaI point nondegenerate ? Is it isolated ? Is it a local maximum 
or minimum? 
(a) I(x, y) = X2 + 4y3 
(b) I(x, y) = X2 - 2xy + y2 
(c) I(x, y) = X2 + y4 

(d) I(x, y) = X2 + l lxy + y2j2 + x6 
(e) I(x, y) = I Oxy + y2 + 75y3 

9. Prove the Morse Lemma in RI . [HINT : Use this elementary caIculus 
lemma : for any function 1 on R and any point a E R, there is another 
function g such that 

I(x) = I(a) + (x - a)f'(a) + (x - a)2g(x). 

This result is proven on page 1 35.] 

lO. Suppose that 1 = � aljxjx) in Rk. Check that its Hessian matrix is 
H = (aj)). Considering Rk as the vector space of column vectors, H 
operates as a linear map by left multiplication, as usual. Show that if 
Hv = 0, then 1 is criticaI ali along the line through v and o. Thus the 
origin is an isolated criticai point if and only if H is nonsingular. 

11. Using the Morse Lemma, prove that if a i s  a nondegenerate criticaI 
point of a functionj, there exists a local coordinate system (x l '  • . •  , x.) 
around a such that 

El = ± l . 

[HINT : Diagonalize (hj)).] 

12. Prove that the functionl in Exercise I l  has a maximum at a if alI the 
E/S are negative and a minimum if they are ali positive. Show that if 
neither is the case, then a i s  neither a maximum nor a minimum. 

13. Show that the determinant function on M(n) is Morse if n = 2, but not 
if n >  2. 

14. Show that the "height function" (x I > • • •  , xk) ----> Xk on the sphere Sk- I 
is a Morse function with two criticai points, the poles. Note that one 
pole is a maximum and the other a mini)llum. 
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15. Let X be a submanifold of RN. Prove that there exists a linear map 
l :  RN -----> R whose restriction to X is a Morse function. (Exercise 14  is 
a special case.) 

16. Let I be a smooth function on an open set V c Rk. For each x E V, 
let H(x) be the Hessian matrix of f, whether x is criticaI or no1. Prove 
that I is Morse if and only if 

det (H)2 + i� (;{)2 
> O on U. 

17. Suppose that/, i s  a homotopic family of functions on Rk. Show' that if 
lo is Morse in some neighborhood of a compact set K, then so is every 
l, for t sufficiently small. [HINT: Show that the sum in Exercise 16  is 
bounded away from O on a neighborhood of K as long as t is small.] 

18. (Stability of Morse Functions) Let/be a Morse function on the compact 
manifold X, and let/, be a homotopic family of functions with /o =/ 
Show that each/, is Morse i f  t is sufficiently small. [HINT: Exercise 17.] 

19. Let X be a compact manifold. Prove that there exist Morse functions on 
X which take distinct values at distinct criticai points. [HINT : Letl be 
Morse, and let Xl ' . . .  ' XN be its criticaI points. Let Pi be a smooth func­
tion on X that is one on a small neighborhood of XI and zero outside a 
slightly larger neighborhood. Choose numbers a l ' . . .  , aN such that 

if i ;;t:. j. 

Prove that if the ai are small enough, then 

has the same criticai points as I and is even arbitrarily close to .f] 

20. (a) Suppose that X is a compact manifold in RN and/ is a function on 
X. Show that the N-tuples (a l ' . . .  , aN) for which 

la = 1  + alXl + . . .  + aNxN 

is a Morse function constitute an open se1. 
(b) Remove the compactness assumption on X, and show that the set 

{a :fa Morse} is a countable intersection of open sets. [HINT : Use 
(a), plus the second axiom of countability.] 

, 

(c) The set {a : la not Morse} is therefore a countable union of closed 
sets. Show that this is enough to justify the use of Fubini in our 
proof of the existence of Morse functions. (See Appendix A.) 
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21. Let ifJ :  X -----> RN be an immersion. Show for "almost every" al , . . . , aN, 
alifJl + . . .  + aNifJN is a Morse function on X where ifJI "  . .  , ifJN are 
the coordinate functions of ifJ. [HINT : Show that the proof we gave for 
the existence of Morse functions only requires X to be immersed in 
RN, not embedded.] 

22. Here is an application of Morse theory to electrostatics. Let XI '  • • •  ' X4 
be points in generai position in R3 (that is, they don't all lie in a piane.) 
Let q l ' . . .  , q4 be electric charges placed at these points. The potenti al 
function of the resulting electric field is 

where r 1 = I X - x; !. The criticai points of Vq are called equilibrium 
points of the electric field, and an equilibrium point is non-degenerate if 
the criticaI point is. Prove that for "almost every" q the equilibrium 
points of Vq are non-degenerate and finite in number. [HINT : Show that 
the map : R3 - (XI '  • • •  , x4} -----> R4 with coordinates r l , r2, r3 ' r4 is an 
immersion and appIy Exercise 2 1 .] 

§8 Embed d i n g  Man ifolds 

in Eucl idean Space 

The second application we shall give for Sard's theorem is a 
proof of the Whitney embedding theorem . . A k-dimensional manifoid X has 
been defined as a subset of some EucJidean space RN that may be enormous 
compared to X. This ambient EucIidean space is rather arbitrary when we 
consider the manifoid X as an abstract object. For exampIe, if M > N, then 
RN naturalIy embeds in RM, so one might have constructed the same manifold 
X in RM instead. Whitney inquired how large N must be in order that RN 
contai n a diffeomorphic copy of every k-dimensional manifold. His prelimi­
nary answer was that N = 2k + I suffices ; this is the resuIt we shall prove. 
After a great deai ofhard work, Whitney improved his resuIt by one, establish­
ing that every k-dimensionai manifold actualIy embeds in R2k. 

One way to interpret the Whitney theorem is as a Iimit to the possible 
compIexity of manifolds. Any manifoid that may be defined in RN may aiso 
be defined in RN+I ; but perhaps the extra room for twisting in RN+ I alIows 
the construction of manifoIds there that cannot exist inside the smaller space 
RN. (In fact, it is not a priori obvious that any singie EucIidean space is 
Iarge enough to contain alI manifoIds of a given dimension.) A cIassic example 
i s  the Klein bottIe, a surface that can be constructed in R4 by attaching the 
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circular ends of a cylinder to one another, but with the opposite orientations. 
(When ends are identified with the same orientation, the resulting manifold 
is just the torus.) In R3, an immersion of the Klein bottle exists, but self­
intersection is unavoidable ; there is not enough twisting room in R 3 for an 
embedding (Figure 1 -27). (To envision an embedding in R4, represent the 
fourth dimension by density of red coloration and allow the bottle in the 
drawing to blush as it passes through itself.) 

-

". - - -...... 

Cylinder 

Glue ends so 

arrow directi� 
disagree 

Figure 1-27 

Immersed Klein bottle 
in R3 

The Whitney theorem implies that after twice the dimension k of the 
manifolds being constructed, extra twisting room in huge EucIidean spaces 
is wasted ; everything can be done in R2k. The Klein bottle illustrates that 
Whitney's result is optimal, for it is a k = 2 dimensionai manifold that does 
not embed in 3 = 2k - l space. (The circIe is another example.) 

Why N = 2k + l ? As we see it, the underlying geometrical reason why 
2k + l space can accommodate ali k-dimensional manifolds is a basie prop­
erty of transversality that will be proved in the next chapter. To wit, if X 
and Z are submanifolds of Y with dim X + dim Z < dim Y, then one can 
pull X and Z apart by stretching either C'ne an arbitrarily small amount 
(Exercise 6, Chapter 2, Section 3). For the moment, think loosely of a mani­
fold as an intricate piece of plumbing, a construction made by joining k­
dimensionai pipes and various other standard fixtures (Iike k-hemispheres) 
according to some combinatorial prescription. Suppose that we follow in­
structions for fitting the pieces together inside RN. As the pipes are bent, they 
may occasionally pass through one another, like the immersed Klein bottIe 
in R3. But once the Iinkages are complete, we can return to remove the self­
intersections. As long as N > 2k + l ,  a minute stretching of the intersecting 
sections will produce a manifold conforming to prescription. (This technique 
does not explain Whitney's opti mal result N = 2k. For instance, intersecting 
curves can be pulled apart by local deformations in R3 but not in  R2.) See 
Figure 1 -28. 
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oL 
Small deformation 

in R3 

Figure 1-28 

Modeling an acceptable proof on the heuristic argument above would be 
quite difficult. Fortunately, a straightforward, if less visual, proof may be 
derived directly from Sard's theorem. 

A useful object in proving the Whitney theorem is the tangent bundle of a 
manifold X in  RN. The tangent spaces to X at various points are vector sub­
spaces of RN that will generally overlap one another. The tangent bundle 
T(X) is an artifice used to pull them apart. Specifically, T(X) is the subset of 
X x RN defined by 

T(X) = {(x, v) E X X RN : v E Tx(X)}. 

T(X) contains a natural copy Xo of X, consisting of the points (x, O). In the 
direction perpendicular to Xo, it contains copi es of each tangent space Tx(X), 
embedded as the sets {(x, v) : with x fixed}. 

Any smooth map I: X -----> Y induces a global derivative map di: T(X) -----> 
T( Y), defined by dl(x, v) = (f(x), dlx(v» . Note that T(X) is a subset of Eucli­
dean space ; i.e., X c RN, so T(X) C RN X RN. Therefore if Y c RM, then 
di maps a subset of R2N into R2M. We c1aim that di is smooth. For since 
I: X -----> RM is smooth, it extends around any point to a smooth map 
F:  U -----> RM, where U is an open set of RN. Then dF: T(U) -----> R2M locally 
extends di But T(U) is ali of U X RN, an open set in R2N, and as a map of 
this open set, dF is obviously defined by a smooth formula. This shows that 
di: T(X) -----> R2M may be locally extended to a smooth map on an open subset 
of RZN, meaning that di is smooth. 

The chain rule says that for smooth maps I: X -----> Y and g :  Y -----> Z, the 
composite dg o di: T(X) -----> T(Z) equals d(g o I). Consequently, if I: X -----> Y 
is a diffeomorphism, so is di: T(X) -----> T( Y), for the chain rule implies that 
di- I o dlis the identity map of T(X) and di o di- I is the identity map of T( Y). 
Thus diffeomorphic manifolds have diffeomorphic tangent bundles. As a 
result, T(X) is an object intrinsically associated to X; it does not depend on 
the ambient Euclidean space. 

Note that if W is an open set of X, and hence also a manifold, then T(W) 
is the subset T(X) (ì ( W  X RN) in T(X). Since W X RN is open in X X RN, 
T(W) is open in the topology of T(X). Now suppose that W is the image of a 
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local parametrization cf> :  U -> W, U being an open set in Rk. Then dcf> : T( U) 
-> T( W) is a diffeomorphism. But T( U) = U X Rk is an open subset of R 2k, 
so dcf> serves to parametrize the open set T(W) in T(X). Since every point of 
T(X) sits in such a neighborhood, we have proved 

Proposition. The tangent bundle of a manifold is another manifold, and 
dim T(X) = 2 dim X. 

Now we prove a version of Whitney's result. 

Theorem. Every k-dimensional manifold admits a one-to-one immersion in 
R2k+ J . 

Proof In fact, if X c RN is k-dimensional and N > 2k +- I ,  we shall 
produce a linear projection RN -> R 2k+ J that restricts to a one-to-one im­
mersion of X. Proceeding inductively, we prove that if I: X -> RM is an 
injective immersion with M > 2k +- I ,  then there exists a unit vector a E RM 
such that the composition of Iwith the projection map carrying RM onto the 
orthogonal complement of a is stili an injective immersion. Now the comple­
ment H = fb E RM : b ..L  a} is an M - I dimensionaI vector subspace of 
RM, hence isomorphic to RM- J ; thus we obtain an injective immersion into 
RM- J .  

Define a map h :  X X X X R -> RM by h(x, y, t) = t[f(x) - I(y»). 
Also, define a map g : T(X) -> RM by g(x, v) = dl)v). Since M >  2k + I ,  
Sard's theorem implies that there exists a point a E R M  belonging to nei­
ther image ; note that a =F O, since O belongs to both images. 

Let 7t be the projection of RM onto the orthogonal complement H of a. 
Certainly 7t o I: X -> H is injective. For suppose that 7t o I(x) = 7t o I(y). 
Then the definition of 7t implies that I(x) - I(y) = la for some scalar l. If 
x =F y then l =F O, because/is injective. But then h (x, y, 1ft) = a, contradict­
ing the choice of a. 

Similarly, 7t o I: X -> H is an immersion. For suppose that v is a nonzero 
vector in Tx(X) for which d(7t o I}x(v) = O. Because 7t is linear, the chain rule 
yields d(7t o I}x = 7t o dix, Thus 7t o dl)v) = O, so dlx(v) = la for some scalar 
t. Because I is an immersion, t =F O. Thus g(x, l/t) = a, again contradicting 
the choice of a. Q.E.D. 

For compact manifolds, one-to-one immersions are the sa me as embed­
dings, so we have just proved the embedding theorem in the compact case. 
In generaI, we must modify the immersion to make it proper-a topological, 
not a differential problem. The situation is typical of differential topology; 
quite often fundamental differential concepts are most naturally and intui­
tively developed for compact manifolds, then extended by technical tricks to 
arbitrary manifolds. Rather than allow such technicalities to divert you now 
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from the primary conceptual development of our subject, you may choose to 
skip the remainder of this section for the presento Later you can return to 
Iearn the technique, which we shall need again. 

The fundamental trick used for such generalizations is the following 
theorem. 

Theorem. Let X be an arbitrary subset of RN. For any covering of X by 
(relatively) open subsets (U .. }, there exists a sequence of smooth functions 
(Oa on X, calIed a partition oJ unity subordinate to the open cover (U .. }, with 
the folIowing properties :  
(a) O < O;(x) < I for ali x E X and ali i. 
(b) Each x E X has a neighborhood ori which alI but finitely many functions 

Oi are identicalIy zero. 
(c) Each function Oi is identically zero except on some cIosed set contained 

in one of the U ... 
(d) For each x E X, I:i Oi(X) = I .  (Note that according to (b), this sum is 

always finite.) 

Proo! Each U .. may be written as X (ì W .. for some open set W .. in the 
ambient EucIidean space RN. Set W = U .. W .. , and let (KJ be any nested 
sequence of compact sets exhausting the open set W. That is, 

� 
U Kj = W  j= l 

and Kj c Interior (Kj+ l). (For instance, let Kj = (z E W :  I z i  < j  and dis­
tance of z to RN - W > Ifj}.) The collection of alI open balls of RN whose 
cIosures belong to at least one W .. is an open cover of W. Select a finite num­
ber of such balls that cover the set K2• According to Exercise 9 of Section I ,  
for each ball selected we may find a smooth nonnegative function on RN that 
is identically one on that ball and zero outside a cIosed set contained in one 
of the W .. . Cali these functions 1'/ 1 '  1'/2' . . .  , 1'/r' (See Figure 1 -29.) 

We continue building a sequence of functions inductively. For each j > 
3, the compact set Kj - Int (Kj- l) is contained inside the open set W - Kj_ 2' 
The collection of alI open balls small enough to have their cIosures contained 
both in W - Kj- 2  and in some W .. forms an open cover of Kj - lnt (Kj- l ). 
Extract a finite subcover, and then add to our sequence (1'/J one function for 
each ball ; the function is to be equal to one on the ball and zero outside a 
cIosed set contained in both W - Kj- 2  and in one of the W ... 

By construction, for each .i only finitely many functions 1'/i fail to vanish 
on Kj' Thus since every point of W belongs to the interior of some Kj, the 
sum 

I: 1'/j j= 1 
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Figure 1-29 
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is actuaIIy finite in a neighborhood of every point of W. Furthermore, at 
least one term is nonzero at any point of W. Therefore 

I:. 1/ J j= l 

is a weII-defined smooth function. If we let O, be the restriction of this to X, 
then we are done. Q.E.D. 

Coroll�ry. On any manifold X there exists a proper map p :  X ----> R 

Proo! Let { U,.}  be the collection of open subsets of X that ha ve compact 
cIosure, and let ei be a subordinate partition of unity. Then 

� 
p = I:. iOi 

i= 1 

is a weII-defined smooth function. If p(x) < j, then obviously at least one of 
the first j functions O l ,  . • •  , O j must be nonzero at x. Therefore p- l ([ -j, j]) 
is contained in 

j 
U {x : OtCx) "* O}, i= 1 

a set with compact cIosure. But every compact set in R is contained in some 
interval [-j,j]. Q.E.D. 

Whitney Theorem. Every k-dimensional manifold embeds in R2k+ l . 

Proo! Begin with a one-to-one immersion of X into R 2k+ l . Composing with 
any diffeomorphism of R2k+ l into its unit ball -say, z -> zl( l  + 1 Z 1 2)_ 
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we obtain an injective immersion f: X -> R2k+ l such that If(x) I < I for 
alI x E X. Let p :  X -> R be a proper functi6n, and define a new injective 
immersion F: X -> R2k+2 by F(x) = (f(x), p(x» . Now drop back down to 
R2k+ l as in the earlier theorem by composing Fwith an orthogonal projection 
n : R2k+2 --> H, where H is the linear space perpendicular to a suitable unit 
vector, a in R2k+2. 

Recall that the map n o F:  X -> H is stili an injective immersion for al­
most every a E S2k+ l , so we may pick an a that happens to be neither of the 
sphere's two poles. But now n o F is easily seen to be proper. In fact, given 
any bound c, we c1aim that there exists another number d such that the set 
of points x E X where I n  o F(x) I < c is contained in the set where I p(x) I < d. 
As P is proper, the latter is a compact subset of X. Thus the c1aim implies 
that the preimage under n o F of every c10sed ball in H is a compact subset of 
X, showing that n o F is proper. If the c1aim is false, then there exists a 
sequence of points {xtl in X for which I n  o F(xj) I < c but p(x/) -> 00 . Re­
member that, by definition, for every z E R2k+2 the vector n(z) is the one 
point in H for which z - n(z) is a multiple of a. Thus F(xJ - n o F(xj) is a 
multiple of a for each i, and hence so is the vector 

Consider what happens as i -> 00 . 

F(x/) _ (f(x/) I) (O O )  p(x/) - p(xJ ' -> , 
• • • 

, 
, l , 

because If(x/) I < l for alI i. The quotient 

has norm < c/p(x/), so it converges to zero. Thus w/ -> (O, . . .  , O, I ). But 
each w/ is a multiple of a; therefore so is the limit. We conclude that a must 
be either the north or south pole of S2k+ l, a contradiction. This proves the 
c1aim and the theorem. Q.E.D. 

EXERCISES 

2. Let g be a smooth, everywhere-positive function on X. Check that the 
multiplication map T(X) -> T(X), (x, v) -> (x, g(x)v), is smooth. 
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3. Show that T(X x Y) is�diffeomorphic to T(X) x T( Y). 

ss 

4. Show that the tangent bundle to SI is diffeomorphic to the cylinder 
SI X RI . 

5. Prove that the projection map p :  T(X) -> X, p(x, v) = x, is a submer­
sion. 

*6. A vector fie/d v on a manifold X in  RN is a smooth map v : X ----> RN 
such that v(x) is always tangent to X at x. Verify that the following 
definition (which does not explicitly mention the ambient RN) is equi­
valent : a vector field v on X is a cross section of T(X)-that is, a smooth 
map v : X -> T(X) such that p o v equaIs the identity map of X. (p as 
in Exercise 5.) 

*7. A point x E X is a zero of the vector field v if v (x) = O. Show that if k 
is odd, there exists a vector field v on Sk having no zeros. [HINT : For 
k = I, use (Xl >  XZ) -> (-Xz, X I)'] It is a rather deep topologicaI fact 
that nonvanishing vector fields do not exist on the even spheres. We will 
see why in Chapter 3. 

*8. Prove that if Sk has a nonvanishing vector field, then its antipodaI map 
is homotopic to the identity (Compare Section 6, Exercise 7.) [HINT: 
Show that you may take I v(x) I = 1 everywhere. Now rotate X to -x in 
the direction indicated by v(x).] 

9. Let S(X) be the set of points (x, v) E T(X) with I v l  = I .  Prove that 
S(X) is a 2k - 1 dimensionaI submanifold of T(X) ; it is caIIed the 
sphere bund/e of X. [HINT : Consider the map (x, v) -> I v lz.] 

lO. The Whitney Immersion Theorem. Prove that every k-dimensional 
manifoid X may be immersed in R2k. 

1 1. Show that if X is a compact k-dimensionaI manifold, then there exists a 
map X -> RZk-1 that is an immersion except at finitely many points of 
X. Do so by showing that if I: X -> RZk is an immersion and a is a reg­
ular value for the map F:  T(X) --> RZk, F(x, v) = dfx(v), then F- I(a) 
is a finite set. Show that n o lis an immersion except on/- I (a), where n 
is an orthogonaI projection perpendicular to a. The exceptionaI points, 
in /- I (a), are called cross caps. [HINT : Show that there are only finitely 
many preimages of a under F in the compact set {(x, v) : I v I < l} c 
T(X). For if (Xi' VI) are infinitely many preimages, pick a subsequence 
so that XI --> x, VIII vl l -> w. Now show that dfx(w) = O.] 
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12. Whitney showedt that for maps of two-manifolds into R3, a typical 
cross cap looks like the map (x, y) --> (x, xy, y2). Check that this is an 
immersion except at the origino What does its image look like ? 

13. An open cover { V�} of a manifold X is locally finite if each point of X 
possesses a neighborhood that intersects only finitely many of the sets 
V�. Show that any open cover {U�} admits a locally finite refinement 
{ V�}. [HINT : Partition of unity.] 

*14. Inverse Function Theorem Revisited. Use a partition-of-unity technique 
to prove a noncompact version of Exercise IO, Section 3. Suppose that 
the derivative of f: X --> Y is an isomorphism whenever x lies in the 
submanifold Z c X, and assume thatf maps Z diffeomorphically onto 
feZ). Prove that f maps a neighborhood of Z diffeomorphically onto a 
neighborhood of feZ). [Outline: Find local inverses g/ : Vj --> X, where 
{Va is a locally finite collection of open subsets of Y covering feZ). 
Define W = {y E VI : gly) = gly) whenever y E VI n V,}. The maps 
g/ "patch together" to define a smooth inverse g :  W --> X. Finish by 
proving that W contains an open neighborhood of f(Z) ; this is where 
local finÌteness is needed.] 

15. The Smooth Urysohn Theorem. If A and B are disjoint, smooth, c10sed 
subsets of a manifold X, prove that there is a smooth function ifJ on X 
such that O < ifJ < l with ifJ = O on A and ifJ = l on B. [HINT : Partition 
of unity.] 

tH. Whitney, "The Generai Type or Singularity of a Set or 2n - l Functions or n 
Variables," Duke Math. Journal, lO (1943), 1 6 1-172. 



CHAPTER 2 

T ra nsversa l ity 

a n d  I ntersection  

§1 M a n ifolds with Boundary 

We now enlarge the class of geometrie objects under study by 
allowing our manifolds to possess boundaries. For example, we wish to con­
sider spaces like the closed unit ball in Rn, whose boundary is sn- I , or the 
compact cylindrical surface SI X [O, l ]  in R 3, which is bounded by two copies 
ofthe circle. (See Figure 2- 1 .) These spaces fail to be manifolds because neigh­
borhoods of points in their boundaries are not diffeomorphic to open sets in 
Euclidean space. (See Exercise l .) The simplest example of alI  is the upper 
half-space Hk in Rk, consisting of alI points with non negative final coordi­
nate. The boundary of Hk is Rk- I under its usual embedding in Rk. Because 
of its simplicity, we adopt Hk as our model. (See Figure 2-2.) 

Definition. A subset X of RN is a k-dimensional manifold with boundary if 
every point of X possesses a neighborhood diffeomorphic to an open set in the 
space Hk. As before, such a diffeomorphism is called a loeal parametrization 
of X. The boundary of X, denoted a X, consists of those points that belong to 
the image of the boundary of Hk under some local parametrization. lts com­
plement is called the interior of X, Int (X) = X - ax. 

Do not confuse the boundary or interior of X, as we have defined them, 
with the topological boundary or interior of X as a subset of RN. Although 

57 
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o 
Closed ball in R2 

Figure 2-1 

Figure 2-2 

the notions often agree when dim X = N, they definitely do not correspond 
when dim X < N. We shall always use the words in the manifold sense. Note 
that manifolds as defined earlier also qualify as "manifolds with boundary," 
aithough their boundaries are empty. We shall stili reserve the unmodified 
term "manifold" for these, even though, for emphasis, we will sometimes cali 
them "boundaryless." 

The product of two manifolds with boundary, unfortunately, is not gen­
erally another manifold with boundary, as the square [O, I ]  x [O, I ]  iIIus­
trates. But at least the following proposition is true. 

Proposition. The product of a manifold without boundary X and a manifold 
with boundary Y is another manifold with boundary. Furthermore, 

a(x x Y) = X x ay, 

and 
dim (X x Y) = dim X + dim Y. 

Proo! If U c: Rk and V c: Hl are open, then 

is open. Moreover, if ifJ : U -> X and 1fI ;  V -> Y are local parametrizations, 
so is ifJ x 1fI ;  U x V -> X x Y. Q.E.D. 

The most important application of this observation will be to the homo­
topy mapping space X x l of a boundaryless manifold X. 
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Tangent spaces and derivati ves are stili defined in the setting of manifolds 
with boundary. First, suppose that g is a smooth map of an open set U of Hk 
into RI. If U is an interior point of U, then the derivative dgu is already defined. 
If U E a u, the smoothness of g means that it may be extended to a smooth 
map g defined in an open neighborhood of U in Rk ; define dgu to be the deriva­
tive dgu : Rk ---> RI. We must show that if U is another local extension of g, 
then dUu = dg u' Let U1 be any sequence of points i n  Int (U) that converge to 
u. Because g and U both agree with g on Int (U), 

Now use the continuity of these derivati ves with respect to U1; letting U1 ---> U, 
we obtain dgu = dUu, as desired. Remember : even at boundary points, the 
derivative dgu is stilI a linear map of all of Rk into RI. 

It is trivial to verify that differentiation of smooth maps defined on half­
spaces stilI follow.s the chain rule. This allows us to extend differentiation to 
manifolds with boundary exactly as we did for boundaryless manifolds. If 
X c RN is a k-dimensional manifold with boundary, define its tangent space 
Tx(X) at a point x E X to be the image of the derivative ofany local paramet­
rization around x. Check that Tx(X) is a k-dimensional l inear subspace of 
RN-even when x is a boundary point !-whose definition is independent of 
the choice of parametrization. Aiso verify that for a smooth map I: X ---> Y 
of two manifolds with boundary, the derivative at any point x may be defined 
just as before as a linear transformation dix : Tx(X) ---> Tf(x) ( Y). Moreover, 
the chain rule remains valido 

If X is a manifold with boundary, Int (X) is automatically a boundaryless 
manifold of the same dimension as X. The reason is that any interior point is  
in the range of a local parametrization whose domain is an open set of Hk 
contained entirely in Int (Hk) and therefore is an open set of Rk. More inter­
esting is  

Proposition. If X is a k-dimensional manifold with boundary, then a X is a 
(k - l )  dimensionai manifold without boundary. 

Proo! The essential point is to show that if x is in the boundary with re­
spect to one system of local coordinates, then it is in the boundary with 
respect to any other system. If x E a X, there is a local parametrization 
if> : U ---> V, where U is an open subset of Hk and V is an open subset of X. 
We need only show that if>(aU) = a V, for then if> restricts to a diffeomorphism 
of aU = U n  aHk, an open set in Rk- l , with a V  = ax n V, a neighborhood 
of x in ax. By definition, if>(aU) c a v, so we need to demonstrate that 
if>(aU) � a vo That is, if ljI is any local parametrization mapping an open set 
W of Hk into V, we must show that if>(aU) � ljI(a W), or, equivalently, 
au � if>- 1  o ljI(a W). So let g = if>- 1 o 1jI :  W ---> U, and suppose that some 
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w E a w  maps to an interior point u = g(W) of U. As if> and IJI are both 
diffeomorphisms, g must be a diffeomorphism of W onto an open subset g( W) 
of U. As usual, the chain rule implies that the derivative of its inverse, 
d(g- I )u, is bijective. But since u E Int (U), g( W) contains a neighborhood 
of u that is open in Rk. Thus the Inverse Function Theorem, applied to 
the map g- I defined on this open subset of R\ implies that the image of g- I 
contains a neighborhood of w that is open in Rk. This contradicts the as­
sumption w E a w. Q.E.D. 

Observe that if x E ax, then the tangent space to the boundary TAaX) 
is a linear subspace of TAX) with codimension I. (See Figure 2-3.) For any 
smooth mapfdefined on X, let us introduce the notation affor the restriction 
offto a x. The derivative of af at x is just the restriction of dfx to the subspace 
Tx(aX). 

TAiJ X )  

Figure 2-3 

Ali definitions that have been formulated in terms of derivatives of map­
pings make sense verbatim when the manifolds have boundaries. However, 
in seeking extensions of the fundamental theorems of the first chapter, we 
must impose additional restrictions on our maps. We would like conditions 
that would guarantee that if f: X -> Y encounters a submanifold Z or Y, then 
f- I(Z) is a manifold with boundary. We al so want af- I (Z) =f- I (Z)nax. 
Unfortunately, the transversality of f alone doesn't guarantee this. (For exam­
pie, let f: H2 .----> R be the mal' (XI ' x2) -> X2' and let Z be {OJ. Thenf- I(Z) 
= aH2.) The right condition turns out to be an additional transversality as­
sumption along the boundary. 

Theorem. Let f be a smooth map of a manifold X with boundary onto a 
boundaryless manifold Y, and suppose that bothf: X -> Y and af: ax -> Y 
are transversal with respect to a boundaryless submanifold Z in Y. Then the 
preimagef- I (Z) is a manifold with boundary 

aff- I(Z)} = f- I(Z) n ax, 

and the codimension of f- I (Z) in X equals the codimension of Z in Y. 
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Proof The restriction of f to the boundaryless manifold Int (X) is trans­
versaI to Z; so, by the earlier theorem, f- I (Z) (ì Int (X) is a boundaryless 
manifold of correct codimension. Now we need only examine f- I(Z) in a 
neighborhood of a point x E f- I (Z) (ì ax. As usual, reduce to the case 
where Z is a single point by introducing a submersion <P of a neighborhood of 
f(x) in Y onto RI, such that in this neighborhood Z = g- I (O). Here 1 =  
codim Z. Then <P o fis defined in a neighborhood of x in X, and the intersec­
tion of f- I (Z) with that neighborhood is (<P 0 /)- 1(0). We now refer <P o fback 
to Euclidean space by choosing a local parametrization h :  V ----> X around x, 
where V is an open set of H\ and then setting g = <P o f o h. As h :  V -+ h(V) 
is a diffeomorphism, the set f- I (Z) is a manifold with boundary in a neigh­
borhood of x if and only if Cf o h)- I (Z) = g- I(O) is a manifold with boun­
dary near u = h- I (x) E av. 

Just as in the boundaryless case, the transversality assumption 

translates into the fact that x is a regular point of <P o f or, equivalently, that 
g is regular at u. By definition, the smoothness of g means that it extends to 
a smooth map g defined on a neighborhood Ù of u in Rk. As dgu = dgu, g is 
al so regular at u. Since g is a map of boundaryless manifolds, the preimage 
g- I  (O), intersected with some neighborhood of its regular point u, is a bound­
aryless submanifold S of Rk. 

As g- I (O) = S (ì H k in a neighborhood of u, we must show that S (ì Hk 
is a manifold with boundary. This is where the transversality assumption on 
af is essenti al. Denote by n the restriction to S of the last coordinate func­
tion on R\ n :  S ----> R. Then 

S (ì Hk = fs E S : n(s) > O}. 

We c1aim that O is a regular value for n, for, if not, there is a point s E S 
such that n(s) = O and dn, = O. Of course, n(s) = O simply means that 
S E  S (ì aHk. Also, as n :  Rk ----> R is linear, dns equals n. Thus the fact that 
dn, is zero on T.(S) means only that the last coordinate of every vector in 
T.(S) is zero or, equivalently, that 

But since S = g- I (O), we know that the kernel of dg, = dgs : Rk ----> R is 
just T,(S). Now the derivative of ag at s is the restriction of dg, : Rk ----> R 
to Rk- I . Therefore if the kernel of dg, is contained in Rk- I ,  then the two 
linear maps dg, : Rk ----> R and d(ag), : Rk- I  ----> R must have the same kernel. 
But the transversality conditions imply that both maps are surjective ; so the 
standard dimension relation for linear maps tells us that the kernel of dgs 
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has dimension k - 1 ,  whereas the kerne1 of d(ag)s has dimension k - 2. 
Because this fact contradicts the conclusion we just deduced, it must be that 
° is a regular value for g. Finally, the following lemma completes the proof. 

Lemma. Suppose that S is a manifold without boundary and that n : S ----> R 
is a smooth function with regular value O. Then the subset {s E S : n(s) > O} 
is a manifold with boundary, and the boundary is n- I(O). 

Proof. The set where n > ° is open in S and is therefore a submanifold of 
the sa me dimension as S. So suppose that n(s) = O. Because n is regular at s, 
it is locally equivalent to the canonical submersion near s. But the lemma is 
obvious for the canonical submersion. Q.E.D. 

The lemma is not without independent interest. For example, setting S = 

Rn and n(s) = 1 - 1 S 12 , it proves that the closed uni t ball {s E Rn : 1 s 1 < I }  
is a manifold with boundary. 

The generalization of Sard's theorem to manifolds with boundary is more 
straightforward. 

Sard's theorem. For any smooth map I of a manifold X with boundary into 
a boundaryless manifold Y, almost every point of Y is a regular value of both 
I: X ----> Y and al : ax ----> Y. 

Proof. Because the derivative of al at a point x E a X is just the restriction 
of dix to the subspace Tx(aX) c Tx(X), it is obvious that if alis regular at x, 
so is f. Thus a point y E Y fails to be a regular value of both I: X ----> Y and 
al: ax ----> Yonly when it is a criticaI value of/: Int (X) ----> Y or al : ax ----> Y. 
But since Int (X) and ax are both boundaryless manifolds, both sets ofcrit­
ical values have measure zero. Thus the complement of the set of common 
regular values for I and al, being the union of two sets of measure zero, itself 
has measure zero. Q.E.D. 

EXERCISES 

1.  If V c Rk and V c Hk are neighborhoods of 0, prove that there exists 
no diffeomorphism of V with V. 

2. Prove that ifJ: X ----> Yis a diffeomorphism ofmanifolds with boundary, 
then al maps a X diffeomorphically onto a Y. 

3. Show that the square S = [O, I] x [O, 1 ] is not a manifold with bound­
ary. [HINT : If/maps a neighborhood ofthe corner s into H2, and carri es 
boundary to boundary, show that two independent vectors VI and V2 in 
T,eS) are mapped to dependent vectors dl,(vI)' dls(v2),] See Figure 2-4. 
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Figure 2-4 

4. Show that the solid hyperboloid X2 + y2 - Z2 < a is a manifold with 
boundary (a > O). 

5. Indicate for which values of a the intersection of the solid hyperboloid 
X2 + y2 - Z2 < a and the unit sphere X2 + y2 + Z2 = l is a manifold 
with boundary ? What does it look like ? 

6. There are two standard ways of making manifolds with boundary out 
of the unit square by gluing a pair of opposite edges (Figure 2-5). Si m­
pie gluing produces the cylinder, whereas gluing after one twist produces 
the cIosed Mobius band. Check that the boundary of the cylinder is two 
copies of SI ,  while the boundary of the Mobius band is one copy of SI ; 
consequently, the cylinder and Mobius band are not diffeomorphic. 
What happens if you twist n times before gluing? 

7� 
Cylinder 

Twist and glue 
Mobius band 

Figure 2-5 

*7. Suppose that X is a manifold with boundary and x E a X. Let u .i.  X 
be a local parametrization with tP(O) = x, where U is an open subset of 
Hk. Then dtPo : Rk --4 Tx(X) is an isomorphism. Define the upper half­
space Hx(X) in Tx(X) to be the image of Hk under dtPo,  Hx(X) = 
dtPo(Hk). Prove that Hx(X) does not depend on the choice oflocal para­
metrization. 

*8. Show that there are precisely two unit vectors in Tx(X) that are per­
pendicular to Tx(aX) and that one li es inside Hx(X), the other outside. 
The one in Hx(X) is called the inward unit normal vector to the boundary, 
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and the other is the outward unit normal vector to the boundary. Denote 
the outward unit normal by � (x). Note that if X sits in RN, � may be con­
sidered to be a map of ax into RN. Prove that � is smooth. (Specifically, 
what is � (x) for X = Hk ?) See Figure 2-6. 

x 
Figure 2-6 

9. (a) Show that a X is a c10sed subset of X. (In particular, a X is compact 
if X is.) 

(b) Find some examples in which a X is compact but X is not. 

lO. Let x E a X be a boundary point. Show that there exists a smooth non­
negative function 1 on some open neighborhood U of x, such that/(z) 
= ° if and only if z E a u, and if z E a u, then dlzC�(z» > O. 

11. (Converse to Lemma of page 62) Show that if X is any manifold with 
boundary, then there exists a smooth nonnegative function 1 on X, 
with a regular value at 0, such that a X = 1- 1 (0). [HINT : Use a partition 
of unity to glue together the local functions of Exercise I O. What 
guarantees regularity ?] 

§2 O n e- M a n ifolds a n d  Some Consequences 

Up to diffeomorphism, the only compact, connected, one-di­
mensional manifolds with boundary are the c10sed interval and the circle. 
This is one of those absolutely obvious statements whose proof turns out to 
be technically less trivial than expected. The idea is simple enough. Beginning 
at some particular point, just run along the curve at constant speed. Since the 
manifold is compact, you cannot run forever over new territory ; either you 
arrive again at your starting point and the curve must be a circle, or else you 
run into a boundary point and it is an interval. A careful proof has been pro­
vided in an appendix, so for the moment we simply assert 

The Classification of One-Manifolds. Every compact, connected, one-di­
mensional manifold with boundary is diffeomorphic to [O, I ]  or SI . 
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As every compact one-manifold with boundary is the disjoint union or 
finitely many connected components, we obtain a trivial corollary that will 
have surprisingly nontrivial applications. 

Corollary. The boundary of any compact one-dimensional manifold with 
boundary consists of an even number of points. 

The first use to which we put this corollary is in proving: 

Theorem. If X is any compact manifold with boundary, then there exists no 
smooth map g :  X ---> ax such that ag : ax ---> ax is the identity. That is, 
there is no "retraction" of X onto its boundary. 

Proof Suppose that such a g exists, and let Z E a X be a regular value. (z 
exists thanks to Sard.) Then g- I (Z) is a submanifold of X with boundary. As 
the codimension of g- I(Z) in X equals the codimension of {z} in ax, namely 
dim X - l ,  g- I(Z) is one dimensionai and compact. But since ag = identity, 

contradicting the corollary. Q.E.D. 

We can now prove a famous theorem of Brouwer, usually proved either by 
using the sophisticated machinery of algebraic topology or through elaborate 
combinatorics. (The following "trànsversality" proof is due to M. Hirsch.) 

Brouwer Fixed-Point Theorem. Any smooth map f of the closed unit ball 
Bn c Rn into itself must have a fixed point ; that is,f(x) = x for some x E Bn. 

Proof Suppose that there exists anf without fixed points, and we shall con­
struct a retraction g :  Bn ---> aBn. Since f(x) =;i::: x, the two points x and jtx) 
determine a \ine. Let g(x) be the point where the li ne segment starting atf(x) 
and passing through x hits the boundary (Figure 2-7). If x E aBn already, 

g(x) L---'�-fr 

Figure 2-7 
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g(x) = x. Thus g :  B" --> Bn is the identity on aB". We only need show that g 
is smooth to obtain a contradiction to the retraction theorem and thereby 
complete the proof. Since x is in the line segment betweenf(x) and g(x), we 
may write the vector g(x) -f(x) as a multiple I times the vector x -f(x), 
where I > I .  Thus g(x) = Ix + ( I  - t)f(x). If I depends smoothly on x, then 
g is smooth. Take the dot product of both sides of this formula. Because 
I g(x) I = I ,  you obtain the formula 

t2 1 x - f(x) 12 + 2t.f(x) . [x - f(x)] + I f(x) 12 - I = O. 

The latter may look ugly, but it has the redeeming virtue of being a quadra­
tic polynomial with a unique positive root. (There is also a root with I < O, 
corresponding to the point where the line from x through I(x) hits the boun­
dary.) Now we need only substitute into the quadratic formula of high school 
to obtain an expression for t in terms of smooth functions of x. Q.E.D. 

EXERCISES 

1. Any one-dimensional, compact, connected submanifold of R3 is diffeo­
morphic to a circle. But can it be deformed into a circle within R 3 ? 
Draw some pictures, or try with stringo 

2. Show that the fìxed point in the Bro1,lwer theorem need not be an interior 
point. 

3. Find maps of the solid torus into itself having no fixed points. Where 
does the proof of the Brouwer theorem fail ? 

4. Prove that the Brouwer theorem is false for the open ball i x 12 < a. 
[HINT : See Chapter I, Section I ,  Exercise 4.] 

5. Prove the Brouwer theorem for maps of [O, I] directly, without using 
regular values. 

6. Prove the Brouwer theorem for continuous maps I: Bn --> B". Use the 
Weierstrass Approximation Theorem, which says that for any f >  O 
there exists a polynomial mapping p :  R" --> Rn such that I I - p I < f 
on Bn. (O ne reference : Rudin's Principles 01 Malhematical Analysis, 
"The Stone-Weierstrass Theorem.") [HINT : First show that given o >  O, 
you can find p so that I I - p I < O and p :  Bn --> Bn. Now use the fact 
that if/has no fixed points, If(x) - x l  > c >  O on B".] 

7. As a surprisingly concrete application of Brouwer, prove this theorem 
of Frobenius : if the entries in an n X n real matrix A are all non negative, 
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then A has a reaI non negative eigenvalue. [HINT : It suffices to assume A 
nonsingular ; otherwise O is an eigenvalue. Let A al so denote the associat­
ed linear map of R', and consider the map v --> Avll Av I restricted to 
S·- l --> S·- l . Show that this maps the "first quadrant" 

Q = {(X l , . . .  , X.) E S·- I : alI xl > O} 

into itself. 1t is not hard to prove, although we don't expect you to bother, 
that Q is homeomorphic with B'- 1 ; that is, there exists a continuous 
bijection Q --> B'- 1 having a continuous inverse. Now use Exercise 6.] 
See Figure 2-8. 

Figure 2-8 

8. Suppose that dim X = I and L is a subset diffeomorphic to an open in­
tervaI in R 1. Prove that i - L consists of at most two points : 

This is needed for the c1assification of one-manifoIds. [HINT : Given 
g :  (a, b) ::::; L, let p E i - L. Let J be a closed subset of X diffeo­
morphic to [O, I ] , such that I corresponds to p and O corresponds to 
some gel) E L. Prove that J contains either g(a, t) or gel, b), by showing 
that the set {s E (a, l) : g(s) E J} is open and closed in (a, b).] 

§3 Tra nsversal ity 

Earlier we proved that transversality is a property that is stable 
under small perturbations, at Ieast for maps with compact domains. From 
Sard's theorem we shall deduce the much more subtle and valuable fact that 
transversality is a generic quality : any smooth mapf: X --> Y, no matter how 
bizarre its behavior with respect to a given submanifoId Z in Y, may be de-
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formed by an arbitrary small amount into a map that is transversal to Z. 
Physically, stability means that transversal maps are actually observable. The 
fact that transversality is generi c says that on/y transversal maps are observ­
able. In this sense, almost ali mappings are transversal. (See Figure 2-9.). 

j (x) 

----��----�------,_--------�-------- z 

"�sm'll �f",m,,,::'��7-
Figure 2-9 

The key to transversality is families of mappings. Suppose I. : X --> Y 
is a family of smooth maps, indexed by a parameter s that ranges over some 
set S. As we did with homotopies, consider the map F: X X S --> Y defined 
by F(x, s) = lix). We require that the family vary smoothly by assuming S 
to be a manifold and F to be smooth. The centraI theorem is 

The Transversality Theorem. Suppose that F:  X x S --> Y is a smooth map 
of manifolds, where only X has boundary, and let Z be any boundaryless 
submanifold of Y. Ifboth Fand aFare transversal to Z, then for almost every 
s E S, both l. and al, are transversal to Z. 

Proof The preimage W = F- l (Z) is a submanifold of X x S with boundary 
a w  = W n a(x x S). Let lt :  X X S --> S be the natural projection map. 
We shall show that whenever s E S is a regular value for the restriction map 
lt :  W --> S, then/. ?li Z, and whenever s is a regular value for alt : a W --> S, 
then al. ?li z. By Sard's theorem, almost every s E S is a regular value for 
both maps, so the theorem follows. 

In order to show that l. ?li Z, suppose that I.(x) = Z E Z. Because 
F(x, s) = z and F ?li  Z, we know that 

that is, given any vector a E Tz( Y), there exists a vector b E T(x,.)(X X S) 
such that 

dF(x,.)(b) - a E Tz(Z). 

We want to exhibit a vector v E Tx(X) such that dliv) - a E Tz(Z). Now 

T(x, .)(X X S) = TxCX) X T.(S), 
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so b = (w, e) for vectors w E Tx(X) and e E T,(S). If e were zero we would be 
done, for since the restriction of F to X X (s} i s  j" it follows that 

dF(x, s)(w, O) = dj/w). 

Although e need not be zero, we may use the projection n to kill it off. As 

is just projection onto the second factor, the regularity assumption that 
dn(x, s) map T(x, s)( W) onto T.(S) tells us that there is some vector of the form 
(u, e) i n  T(x, slW). But F :  W ...... Z, so dF(x, s)(u, e) E T.(Z). Consequently, 
the vector v = w - U E Tx(X) is our solution. For 

dj/v) - a = dF(x,,)[(w, e) - (u, e)l - a = [dF(x, s)(w, e) - al - dF/u, e), 

and both of the latter vectors belong to Tz(Z). 
Precisely the same argument shows that aj, ?R Z when s is a regular value 

of an. (In fact, this is a special instance of what we just proved, for the case of 
the boundaryless manifold ax and the map aF : (aX) x S -� Y.) Q.E.D. 

The Transversality Theorem easily implies that transversal maps are 
generic when the target manifold Y is a Euclidean space RM. If f: X ...... RM 
is any smooth map, take S to be an open ball of RM itself and then define 
F: X X S ...... RM by F(x,,) = j(x) + s. For any fixed x E X, F is a translation 
of the ball S, obviously a submersion. So, of course, F is a submersion of 
X X S and therefore transversal to any submanifold Z of RM. According to 
the Transversality Theorem, for almost every S E S, the map j/x) = j(x) + s 
is transversal to Z. Thus f may be deformed into a transversal map by the 
simple addition of an arbitrarily small quantity s. 

For an arbitrary, boundaryless, target manifold Y, the proof that trans­
versality is generic follows the same course. Y sits inside some Euclidean space 
RM, and we have just shown how to vary a given map f: X ...... Y through a 
family of maps carrying X into RM. AlI we need to do now is somehow to 
project these maps down onto Y, thereby obtaining a suitable family mapping 
X into Y. To do so, we must understand a little of the geometry of Y with 
respect to its environment. As usual, the compact case is clearest. 

e-Neighborhood Theorem. For a compact boundaryless manifold Y in RM 
and a positive number E, let Y' be the open set of points in  RM with distance 
less than E from Y. If E is sufficiently small, then each point w E Y. possesses 
a unique closest point in Y, denoted n(w). Moreover, the map n :  y. ...... Y 
is a submersion. When Y is not compact, there stilI exists a submersion 
n : y. ...... Y that is the identity on Y, but now E must be allowed to be a 
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Figure 2-10 

smooth positive function on Y, and Y' is defined as {w E R M : I w - y I < 
E(y) for some y E Y} . See Figure 2- 10. 

We postpone the proof for a moment. . 

Corollary. Let f: X -> Y be a smooth map, Y being boundaryless. Then 
there is an open ball S in some Euclidean space and a smooth map F: X x S 
-> Y such that F(x, O) = f(x) , and for any fixed x E X the map s -> F(x, s) 
is a submersion S -> Y. In particular, both F and aF are submersions. 

Proof Let S be the unit baIl in RM, the ambient Euclidean space of Y, and 
define 

F(x, s) = n[J(x) + E(f(X» S]. 

Since n :  Y' -> Y restricts to the identity on Y, F(x, O) = f(x). For fixed x, 

s � f(x) + E(f(X» S 

is certainly a submersion of S -> Y. As the composition of two submersions 
is another, s -> F(x, s) is a submersion. F and aF must obviously be sub­
mersions, for they are submersions even when restricted to the submanifolds 
{x} X S, and one such submanifold passes through each point of X X S and 
each point of (aX) X S. Q.E.D. 

That transversality is generic foIlows directIy. The form we shaIl require is 
the 

Transversality Homotopy Theorem. For any smooth map f: X -> Y and 
any boundaryless submanifold Z of the boundaryless manifold Y, there exists 
a smooth map g :  X -> Y homotopic to f such that g ?R Z and ag ?R Z. 
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Prool For the family of mappings F of  the corollary, the Transversality 
Theorem implies that Is m Z and al, m Z for almost ali s E S. But each 
I, is homotopic to/, the homotopy X X 1->  Y being (x, t) -> F(x, ts). 

Q.E.D. 

To prove the E-Neighborhood Theorem, we introduce an artifice similar 
to the tangent bundle. For each y E Y, define Ni Y), the normal space of Y 
at y, to be the orthogonal complement of Ty( Y) in RM. The normal bundle 
N( Y) is then defined to be the set 

[(y, v) E Y X RM : v E NiY)}. 

Note that unlike T( Y), N( Y) is not intrinsic to the manifold Y but depends on 
the specific relationship between Y and the surrounding RM. There is a nat­
ural projection map o : N( Y) --> Y defined by o(y, v) = y. 

In order to show that N( Y) is a manifold, we must recall an elementary 
fact from linear algebra. Suppose that A :  RM -- Rk is a linear map. Its 
transpose is a linear map A' : Rk -- RM characterized by the dot product 
equation Av · w  = v ·A'w for ali v E RM, W E Rk. If the matrix of A is (al}) 
with respect to the standard bases, then the matrix of A' is (ajl). Note that if 
A is surjective, then A' maps Rk isomorphically onto the orthogonal com­
plement of the kernel of A. For if A'w = 0, then Av· w = v · A'w = O, so that 
w � A(RM) ; since A is surjective, w must be zero and thus A' is injective. 
Similarly, if Av = O then 0 =  Av · w  = v ·A'w, so A'(Rk) � Kernel (A). Thus 
A' maps Rk injectively into the orthogonal complement of Kernel (A). As 
Kernel (A) has dimension M - k, its complement has dimension k, so A' is 
surjective, too. 

Proposition. If Y c RM, then N( Y) is a manifold of dimension M and the 
projection a : N( Y) -> Y is a submersion. 

Prool. Define Y locally by equations : around any given point of Y, find 
an open set Ù of RM and a submersion t/J :  Ù -> Rk (k = codim Y) such that 
U = Y n Ù = t/J- I (O). The set N(U) equals N(Y) n (U  X RM), thus is open 
in N( Y). For each y E U, dt/Jy : RM -- Rk is surjective and has kernel Ty( Y). 
Therefore its transpose maps Rk isomorphically onto Ni Y). The map 
1jI :  U X Rk -- N( U), defined by ljI(y, v) = (y, dt/J�w), is thus bijective, and it is 
easy to check that it is an embedding of U X Rk into Y X RM. Consequently, 
N(U) is a manifold parametrized by 1jI, with dimension = dim U + k = 
dim Y + codi m Y = M. Since every point of N( Y) has such a neighborhood, 
N( Y) is a manifold. Since a o ljI : U X Rk -> U is just the standard submer­
sion, a is a submersion. Q.E.D. 

Prool 01 the €-Neighborhood Theorem. Let h :  N( Y) -> RM be h(y, v) = y + v. 
Notice that h is regular at every point of Y X [O} in N( Y), for through (y, O) 
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there pass two natural complementary manifolds of N( Y), Le., Y X {O} and 
fy} x Ny( Y). The derivative of h at (y, O) maps the tangent space of Y X fO} 
at (y, O) onto Ty( Y) and maps the tangent space of {y} x Ny( Y) at (y, O) onto 
Ny( Y). Therefore it maps onto Ty( Y) + Ny( Y) = RM. 

Since h maps Y X {O} diffeomorphically onto Y and is regular at each 
(y, O), it must map a neighborhood of Y x fO} diffeomorphically onto a 
neighborhood of Y in RM (Exercise 14 of Chapter I ,  Section 8). Now any 
neighborhood of Y contains some Y' ; this point is obvious when Y is com­
pact and easy to show in generaI (Exercise I ) .  Thus h- I : Y' --> N( Y) is de­
fined, and 1t = (1 o h- 1 : Y' --> Y is the desired submersion. The geometrie 
description of 1t for compact manifolds, which we never use, will be derived 
is Exercise 3. Q.E.D. 

We will need a somewhat stronger form of the Transversality Homotopy 
Theorem. Let us say that a map f: X --> Y is transversal to Z on a subset C 
of X if the transversality condition 

is satisfied at every point x E C lì f- I (Z). 

Extension Theorem. Suppose that Z is a c10sed submanifold of Y, both 
boundaryless, and C is a c10sed subset of X. Letf: X --> Y be a smooth map 
withf m  Z on C and af m Z on C lì ax. Then there exists a smooth map 
g :  X -- Y homotopic to J, such that g m Z, ag m Z, and on a neighborhood 
of C we have g = f 

Lemma. lf V is an open neighborhood of the closed set C in X, then there 
exists a smooth function y :  X --> [O, I ]  that is identically equal to one outside 
V but that is zero on a neighborhood of C. 

Proof Let C' be any c10sed set contained in V that contains C in its interior, 
and let lei} be a partition of unity subordinate to the open cover ( V, X - C'} 
of X. (The proof of the Partition of Unity Theorem is stili valid when X has 
boundary.) Then just take y to be the sum of those e/ that vanish outside of 
X - C'. Q.E.D. 

Proof of theorem. First we show that f m Z on a neighborhood of e. If 
x E C but x 1= f- I(Z), then since Z is c1osed, X - f- I (Z) is a neighborhood 
of x on which f m Z automatically. If x E f- I(Z), then there is a neighbor­
hood W ofj(x) in Y and a submersion rp : W --> Rk such thatf m Z at a point 
x' E f- J (Z lì W) precisely when rp o f is regular at x'. But rp o f is regular at 
x, so it is regular in a neighborhood of x. Thus f m Z on a neighborhood of 
every point x E C, and so f m Z on a neighborhood V of X. 
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Let y be the function in the lemma, and set .. = y2 . Since d .. x = 2y(x) d'l x' 
d .. x = O wherever .. (x) = O. Now we modify the map F : X X S -> Y 
which we used in proving the Homotopy Theorem, defining G :  X X S ---> Y 
by G(x, s) = F(x, .. (x)s). We claim G m z. For suppose that (x, s) E 

G- I(Z), and say, .. (x) * O. Then the map S ---> Y, defined by r ---> G(x, r), 
is a submersion, being the composition of .the diffeomorphism r -- .. (x)r 
with the submersion r ---> F(x, r). ConsequentIy, G is regular at (x, s), so cer­
tainly G m Z at (x, s). When .. (x) = O we evaluate dG(x. s) at any element 

If, for clarity, we define m : X X S ---> X X S by m(x, s) = (x, .. (x)s), then its 
derivative is 

dm(x.s)(v, w) = (v, .. (x) · w + d .. x(v) · s), 

where .. (x), d .. x(v) E R are scalars multiplying the vectors w, s E RM. Now 
apply the chain rule to G = F o m, substituting .. (x) = O and d .. x = O :  

Since F equals f when restricted to X X {O} 

But if .. (x) = O, then x E U and f m Z at x, so the fact that dfx and dG(x.s) 
have the same images implies that G m Z at (x, s). 

A similar analysis shows that aG m Z. Now, by the Transversality Theo­
rem, we can pick an s for which the map g(x) = G(x, s) satisfies g m Z and 
ag m z. As before, g is homotopic to f Furthermore, if x belongs to the 
neighborhood of C on which .. = O, then g(x) = G(x, s) = F(x, O) = f(x). 

Q.E.D. 

Since ax is always cIosed in X, we obtain the special case 

Corollary. If, for f: X ---> Y, the boundary map af : ax ---> Y is transversal 
to Z, then there exists a map g :  X ---> Y homotopic to f such that ag = af 
and g m z. 

Focusing attention on the boundary, the corolIary may be interpreted in  
another useful formo Suppose that h :  ax -> Yis a map transversal t9  Z. Then 
if h extends to any map of the whole manifold X -> Y, it extends to a map 
that is transversal to Z on alI of X. 
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EXERCISES 

1. (For the E-Neighborhood Theorem) Show that any neighborhood U 
of Yin RM contains some Y' ; moreover, if Yis compact, E may be taken 
constant. [HINT : Find covering open sets Ua. c Y and Ea. > O, such that 
U!« c U. Let rOtl be a subordinate partition of unity, and show that 
E = L; OIEI works.] 

2. Let Y be a compact submanifold of RM, and let w E RM. Show that 
there exists a (no t necessarily unique) point y E Y closest to w, and 
prove that w - y E Ny{ Y). [HINT: If cCt) is a curve on Y with c(O) = y, 
then the smooth function I w - c(t) 12 has a minimum at O. Use Exercise 
1 2, Chapter I ,  Section 2.] 

3. Use Exercise 2 to verify the geometrie characterization of n :  y< -> Y, 
for compact Y. Assume that h :  N( Y) -> RM carri es a neighborhood of 
Y in N(Y) diffeomorphieally onto Y', E constant. Prove that if w E Y', 
then n(w) is the unique point of Y closest to w. 

4. (GeneraI Position Lemma) Let X and Y be submanifolds of RN. Show 
that for almost every a E RN the translate X + a intersects Y trans­
versally. 

*5. Suppose that the compact submanifold X in Y intersects another sub­
manifold Z, but dim X + dim Z < dim Y. Prove that X may be pulled 
away from Z by an arbitrarily small deformation : given E > O there 
exists a deformation X, = i,(X) such that XI does not intersect Z and 
I x  - il(x) I < E for all x E X. (Note : You need Exercise I l , Chapter l ,  
Section 6. The point here i s  to make X, a manifold.) 

6. Sharpen Exercise 5. Assume that Z is closed in Y and let U be any open 
set in X containing Z (ì X. Show that the deformation X, may be cho­
sen to be constant outside of U (Figure 2- 1 1 ). 

----- - - -

Figure 2-11 
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*7. Suppose that X is a submanifold of RN. Show that "almost every" 
vector space V of any fixed dimension l in RN intersects X transversalIy. 
[HINT : The set S c (RN)I consisting of alI linearly independent l-tuples 
of vectors in RN is open in RNl, and the map R1 X S --> RN defined by 

is a submersion.] 

8. Suppose that f: R" --> R" is a smooth map, n > I ,  and let K c R" be 
compact and f > O. Show that there exists a map l' : R" --> R" such that 
df� is never zero, but If -l' I  < f on K. Prove that this result is false 
for n = l .  [HINT : Let M(n) = {n X n matrices}, and show that the map 
F :  R" X M(n) -----* M(n), defined by F(x, A) = dfx -j - A, is a submer­
sion. Pick A so that FA ?R {O} ; where is n > I used ?] 

9. Letf: Rk --> Rk, and, for each a E Rk, define 

Prove that for almost alI a E R\fa is a Morse function. [HINT : Con­
sider 

Show that this is a submersion, hence ?R {O}.] 

10. Let X be an n - I dimensionaI submanifold of R", a "hypersurface." 
A point in R" is called afocal point of X if it is a criticaI value of the 
normaI bundle map h :  N(X) --> R", h(x, v) = x + v. Locate the focai 
points of the parabola y = X2 in R2. [Answer: You get a curve with a 
cusp at (O, !).] 

11. Let X be a one-dimensionai submanifold of R2, and let p E X. Choose 
Iinear coordinates in R2 so that p is the origin, the x axis is the tangent 
Hne to X at p, and the y axis is the normal line. Show that in a neighbor­
hood of p = O, X is the graph of a function y = f(x) withf(O) = O and 
1'(0) = o. The quantity f"(O) is called the curvature of X at p, denoted 
1C(p). Show that if 1C(p) =F O then X has a focaI point along the normal 
line at distance 1 /1C(p) from p. [HINT : Show that the norma I space to X 
at a point x near p is spanned by (-l'(x), l ). Now compute the normaI 
bundle map h :  N(X) ---+ R2.] 
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* 12. Let Z be a submanifold of Y, where Y c RM. Define the normal bundle 
lo Z in Y to be the set N(Z; Y) = {(z, v) : z E Z, V E Tz( Y) and v ...L 
Tz(Z)}. Prove that N(Z; Y) is a manifold with the same dimension as Y. 
[HINT : Let gl ' . . .  , g/ be independent functions in a neighborhood O 
of z in RM, with 

u = Z n O = {gl = 0, . . . , g/ = O} 
and 

Y n O = {gk+ I = 0, . . .  , g/ = O} 

(Exercise 4, Chapter I ,  Section 4). Show that the associated parametriza­
tion U x R/ -> N(Z; RM) as constructed in the text restricts to a para­
metrization U X Rk -> N(Z; Y).] 

13. Consider Sk- I as a submanifold of Sk via the usual embedding mapping 
(x I , . . •  , xk) -> (x I , • • .  , Xk> O). Show that at p E Sk- I the orthogonal 
complement to TP(Sk- l ) in Tp(Sk) is spanned by the vector (O, . . .  , 0, I ). 
Prove that N(Sk-1  ; Sk) is diffeomorphic to Sk- I X R. 

14. Prove that the map o :  N(Z; Y) -> Z, o(z, v) = z, is a submersion. 
What specifically is the preimage O- I (Z), which we denote by Nz(Z; Y) ? 

15. Show that the map z --> (z, O) embeds Z as a submanifold of N(Z; Y). 

* 16. Tubular Neighborhood Theorem. Prove that there exists a diffeomor­
phism from an open neighborhood of Z in N(Z; Y) onto an open neigh­
borhood of Z in Y. [HINT : Let Y' � Y be as in the E-Neighborhood 
Theorem. Consider the map h :  N(Z; Y) -> RM, h(z, v) = z + v. Then 
W = h- ' (  y,) is an open neighborhood ofZ in N(Z; Y). The sequence of 

maps W � Y' � Y is the identity on Z, so use Exercise 14 of Chapter 
I ,  Section 8 .] 

17. Let d be the diagonal in X X X. Show that the orthogonal complement 
to T(x,x)(d) in T(x, x)(X X X) is the collection of vectors {(v, -v) : v E 
TxCX)}. [See Exercise IO, Chapter I ,  Section 2.] 

* 18. Prove that the map T(X) -:-> N(d ; X X X), defined by sending (x, v) to 
« x, x), (v, -v» , is a diffeomorphism. Use the Tubular Neighborhood 
Theorem to conclude that there is a diffeomorphism of a neighborhood 
of X in T(X) with a neighborhood of d in X X X, extending the usual 
diffeomorphism X -> d, x -> (x, x). 

* 19. Let Z be a submanifold of codimension k in Y. We say that the normal 
bundle N(Z; Y) is IrMal if there exists a diffeomorphism fP :  N(Z; Y) 
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-> Z X Rk that restricts to a linear isomorphism Nz(Z; Y) -> {z} X Rk 
for each point z E Z. As a check on your grasp of the construction, 
prove that N(Z; Y) is always locally trivial. That is, each point Z E Z 
has a neighborhood V in Z such that N(V; Y) is trivial. 

*20. Prove that N(Z; Y) is trivial if and only if there exists a set of k inde­
pendent global defining functions gh . . .  , gk for Z on some set U in Y. 
That is, 

Z = {y E U : gl(Y) = O, . . .  , gk(Y) = O}. 

[HINT : If N(Z; Y) is trivial, then there obviously exist global defining 
functions for Z in N(Z; Y). Transfer these functions to an open set in Y 
via the Tubular Neighborhood Theorem, Exercise 16 .  Conversely, if 
there exists a submersion g :  U -> Rk with g- I (O) = Z, check that, for 
each Z E Z, the transpose map dg� :  Rk -> Tz( Y) carries Rk isomor­
phically onto the orthogonal complement of Tz(Z) in Tz( Y) ; thus 
<1>- 1 : Z X Rk -> N(Z; Y) is defined by <I>- I (Z, a) = (z, dg�a).] 

§4 I ntersection Theory M od 2 

The previous section was technical and rather difficult. We now 
hope to convince you that the effort was worth it. In this section we will use 
the transversality lemma and the other results of Section 3 to develop a simple 
intuitive invariant for intersecting manifolds, from which we will be able to 
obtain many nice -geometric consequences. 

Two submanifolds X and Z inside Y have complementary dimension if 
dim X + dim Z = dim Y. If X ifi Z, this dimension condition makes their 
intersection X (ì Z a zero-dimensionai manifold. (We are working now with­
out boundaries.) If we further assume that both X and Z are closed and that 
at least one of them, say X, is compact, then X (ì Z must be a finite set of 
points. Provisionally, we might refer to the number of points in X (ì Z as the 
"intersection number" of X and Z, indicated by #(X (ì Z). See Figure 2-1 2. 

How can we generalize this discussion to define the intersection number 
of the compact X with an arbitrary closed Z of complementary dimension ? 

x z #( x n z) = 4 

Figure 2-12 
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Without transversality, X (ì Z may be some frowzy, useless conglomeration. 
But we can wiggle X, deforming it ever so slightly, and make it transversal 
to Z. Then we might simply define the intersection number of X and Z to be 
the intersection numbers we obtain after the plastic surgery. The difficulty is 
that different alterations of X can produce different intersection numbers 
(Figure 2- 1 3). Happily the idea is savable nonetheless, because as we shall 
see, the intersection numbers obtained with different deformations at least 
agree mod 2. AlI deformations either give even intersection numbers, or they 
alI give odd ones. Thus a mod 2 intersection number of X and Z can be mean­
ingfulIy defined. 

x" 

Z 

# ( X"n Z ) = 2  

-

Z Z 

# ( x' n  Z) = 0  

Figure 2-13 

We must deal with the necessity of deforming X in a mathematicalIy 
precise manner. Attempting to define deformations of arbitrary point sets in 
Y is hopeless, so we shift our point of view somewhat. Considering X as an 
abstract manifold and its inclusion mapping i :  X c..- Y simply as an embed­
ding, we know how to deform i, namely by homotopy. Since embeddings 
form a stable class of mappings, any small homotopy of i gives us another 
embedding X -> Y and thus produces an image manifold that is a diffeo­
morphic copy of X adjacent to the originaI. 

We are led to the folIowing more generaI situation. Suppose that X is any 
compact manifold, not necessarily inside Y, andf: X -> Y is a smooth map 
transversal to the closed manifold Z in Y, where dim X + dim Z = dim Y. 
Then f- I (Z) is a closed zero-dimensionaI submanifold of X, hence a finite 
set. Define the mod 2 intersection number of the map f with Z, 12(J, Z), to be 
the number of points inf- I (Z) modulo 2. For an arbitrary smooth map g :  X 
-> Y, select any mapfthat is homotopic to g and transversal to Z, and define 
12(g, Z) = 12(f, Z). The ambiguity in the definition is remedied by : 

Theorem. If fo'/I : X -> Y are homotopic and both transversal to Z, then 
12(fo, Z) = 12(/1 > Z). 

Proo! Let F :  X X 1 -> Y be a homotopy of fo and fl ' By the Extension 
Theorem, we may assume that F m Z. Since a(X x 1) = X x (O} u X x ( I }  
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and aF is /o on X x {O} and /l on X X { I }, aF in z. Then F- I(Z) is a one­
dimensionaI submanifold of X x 1 with boundary 

From the c1assification of one-manifolds, aF- I (Z) must have an even number 
of points, so #/o- I (Z) = #/I- I (Z) mod 2. Q.E.D. 

Because homotopy is  an equivalence relation, we immediately obtain 

Corollary. If go, gl : X -> Y are arbitrary homotopic maps, then we have 
12(go, Z) = 12(gt > Z). 

Return now to the motivating speciai case. If X is a compact submanifold 
of Y and Z a c10sed submanifold of complementary dimension, we define the 
mod 2 intersection number of X with Z by 12(X, Z) = 12(i, Z), where i :  X c-. 
Y is the inclusion. When X in Z, then 12(X, Z) is just # X  (ì Z mod 2. lf 
12(X, Z) :;z!: 0, then no matter how X is deformed it cannot be pulled entirely 
away from Z. For example, on the torus Y = SI X SI the two complemen­
tary circles SI x { l }  and f I 1 X SI have nonzero mod 2 intersection numbers 
(Figure 2-1 4) .  

12(X. Z )  = I 

Figure 2-14 

A curious situation prevails when dim X = � dim Y, for then we may con­
sider 12(X, X) the mod 2 self-intersection number of X. An illustrative example 
is the centrai curve on the open M6bius band. Make a model of the M6bius 
band by taping together the ends of a twisted paper strip, and show that 

Tape ends 
• 

Mobius band 

Figure 2-15 



80 CHAPTER 2 TRANSVERSALlTY ANO INTERSECTION 

Iz(X, X) = l .  Convince yourself that no matter how X is  deformed, it can 
never be pulled entirely away from its originai position (Figure 2- 1 5). 

If X happens to be the boundary of some W in Y, then Iz(X, Z) = o. For 
if Z ifi X, then, roughly speaking, Z must "pass out" of W as often as it 
"enters" ; hence #(X n Z) is even (Figure 2- 16). 

Figure 2-16 

In the more generai setting, we formulate this observation as follows : 

Boundary Theorem. Suppose that X is the boundary of some compact mani­
fold W and g :  X -----> Y is a smooth map. If g may be extended to ali of W, 
then Iz(g, Z) = O for any c10sed submanifold Z in Y of complementary 
dimensiono 

Prool Let G :  W -----> Y extend g; that is, aG = g. From the Transversality 
Homotopy Theorem, we obtain a homotopic map F :  W -----> Y, with F ifi Z 
and 1 = aF ifi Z. Then l ''''' g, so Iz(g, Z) = #1- 1 (Z) mod 2. But F- 1 (Z) is 
a compact one-dimensional manifold with boundary, so #aF- 1 (Z) = 
#1- 1 (Z) is even. Q.E.D. 

Intersection theory gives us an interesting "homotopy invariant" attached 
to maps between manifolds of the same dimensiono The definition depends on 
the following fact. 

Theorem. If I: X -----> Y is a smooth map of a compact manifold X into a 
connected manifold Y and dim X = dim Y, then Iz(J, {y}) is the same for ali 
points y E Y. This common value is called the mod 2 degree of J, denoted 
degz (I). 

We emphasize that degree mod 2 is defined only when the range manifold 
Y is connected and the domai n X is compact ; whenever degz is written, these 
assumptions are implicit. 
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Proof Given any y E Y, alter I homotopical1y, if necessary, to make it 
transversal to {y}. Now by the "Stack of Records Theorem" (Chapter I, Sec­
tion 4, Exercise 7), we can find a neighborhood U of y such that the preimage 
I- I (U) is a disjoint union VI U '  . .  U V., where each VI is an open set in X 
mapped by I diffeomorphical1y onto U. We conclude that 12(f, {z}) = n 
mod 2 for ali points z E U. ConsequentIy, the function defined on Y by 
y -> 12(f, fy}) is locally constant. Since Y is connected, it must be global1y 
constant. Q.E.D. 

Note that calculating t-he mod 2 degree of/is a very easy matter. Just pick 
any regular value y for I, and count preimage points : deg2 (f) = #I-I(y) 
mod 2. For example, the map z -> zn (complex multiplication), which wraps 
SI smoothly around SI n times, has mod 2 degree zero if n is even, one if n 
is odd. 

Since deg2 is defined as an intersection number, we immediately obtain 

Theorem. Homotopic maps have the sa me mod 2 degree. 

Theorem. If X = a w  and I: X -> Y may be extended to ali of W, then 
deg2 (f) = O. 

We can apply this topological observation to the ancient problem of in­
vestigating the zeros of functions. Suppose, for example, that p : C -> C is a 
smooth, complex function and W is a smooth compact regio n in the pIane, a 
two-dimensional manifold with boundary. Does p(z) = O for some z E W? 
We assume that p has no zeros on a w, so that p/I p I : a w  -> SI is defined and 
smooth as a map of compact one-manifolds. Now if p has no zeros inside W, 
then p/I p I is defined on ali of W, and the last theorem implies 

Proposition. If the mod 2 degree of p/lp l :  a w  -> SI is nonzero, then the 
function p has a zero inside W. 

How remarkable that by simply counting the number of times p(z) points 
in a given direction while z is on the boundary, we may be able to tell whether 
the equation p(z) = O is solvable inside W! In order to indicate both the 
power and the limitation of this theory, let us prove half of the Fundamental 
Theorem of Algebra. Suppose that 

is a monic complex polynomial, and define a homotopy by 

p,(z) = tp(z) + (l - t)zm 

= zm + t(a lzm- I  + . . .  + am). 
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l ì  is easily seen that if W is a c10sed ball of sufficiently large radius, then none 
of the p, have zeros on a W. For 

and the term in parenthesis ---) O as z -> 00. Thus the homotopy p'/lp, l : a W 
-) SI is defined for ali l, so we conclude that deg2 (pii p I) = deg2 (Poli Po I). The 
polynomiaI Po is just zm ; therefore every point in SI has precisely m preimage 
points in a W under Poli Po I . Since we compute deg2 by counting preimages of 
regular values, deg2 (Poli Po I) = m mod 2. The preceding proposition now 
gives 

One-half Fundamental Theorem of Algebra. Every complex polynomial of 
odd degree has a root. 

This famous result was effortlessly obtained, but it also demonstrates the 
insufficiency of mod 2 intersection theory : too much information is wasted. 
The deg2 invariant is too crude to distinguish the polynomial Z2 from a con­
stant, so it cannot prove the even half of the Fundamental Theorem of Al­
gebra. In the next chapter we shall refine our whole approach in order to 
construct a theory of considerably greater power. Yet the naive methods al­
ready developed continue to produce surprisingly deep insights with a mini­
mum of strain, as illustrated by the following two sections. 

EXERCISES 

1. Prove that there exists a complex number z such that 

Z7 + cos (I Z 12)( 1 + 93z4) = O. 

(For heaven's sake, don't try to compute it !) 

2. Let X -L y .L  Z be a sequence of smooth maps of manifolds, with X 
compact. Assume that g is transversal to a c10sed submanifold W of Z, 
so g- I (W) is a submanifold of Y. Verify that 

(See Exercise 7, Chapter I ,  Section 5.) In particular, check that if the 
conditions are such that one of these intersection numbers is defined, 
then so is the other. 

3. Suppose that X and Z are compact manifolds and thatf: X -> Y, and 
g :  Z -> Y are smooth maps into the manifold Y. If dim X + dim Z = 



§4 Intersection Theory Mod 2 83 

dim Y, we can define the mod 2 intersection number offand g by 12(f, g) 
= 12(f x g. a), where a is the diagonal of Y x Y. 
(a) Prove that /2(J, g) is  unaltered if either f or g is vari ed by a homo­

topy. 
(b) Check that l2Cf, g) = /2(g,f) [HINT : Use Exercise 2 with the "switch­

ing diffeomorphism" (a, b) -> (b, a) of Y x Y -> Y X Y.] 
(c) If Z is actually a submanifold of Y and i :  Z L� Y is its inclusion, 

show that 

(d) Prove that for two compact submanifolds X and Z in Y, 

(Note : This is trivial when X ?R  Z. So why
' 
did we use this ap­

proach ?) 

*4. Iff: X --> Y is homotopic to a constant map, show that 12(J, Z) = O for 
ali complementary dimensionai closed Z in Y, except perhaps if dim X 
= o. [HINT : Show that if dim Z < dim Y, then fis homotopic to a con­
stant X --, [y}, where y t/= Z. If X is one point, for which Z will U,f, Z) 
'* O?] 

*5. Prove that intersection theory is vacuous in contractable manifolds : 
if Y is contractable and dim Y >  O, then 12(J, Z) = O for every f: X ---, 
Y, X compact and Z closed, dim X + dim Z = dim Y. (No dimension­

zero anomalies here.) In particular, intersection theory is vacuous in 
Euclidean space. 

*6. Prove that no compact manifold-other than the one-point space-is 
contractable. [HINT : Apply Exercise 5 to the identity map.] 

*7. Prove that Si is not simply connected. [HINT : Consider the identity 
map,] 

*8. (a) Letf: Si -> Si be any smooth map. Prove that there exists a smooth 
map g :  R -> R such that f(cos l, sin l) = (cos gel), sin gel»�, and 
satisfyingg(21l) = geO) + 21lq for some integer q. [HINT : First define 
g on [O, 21l], and show that g(21l) = geO) + 21lq. Now extend g by 
demanding g(l + 21l) = gel) + 21lq.] 

(b) Prove that deg2 (f) = q mod 2. 

9. (Degrees are the only interesting intersection numbers on spheres.) 
Supposef: X -> Sk is smooth, where X is compact and 0 <  dim X < k. 
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Then for aIl closed Z C Sk of dimension complementary to X, 
Iz(X, Z) = O. [HINT: By Sard, there exists p 1=. I(X) n z. Use stereo­
graphic projection, plus Exercise 5.] 

lO. Prove that SZ and the torus are not diffeomorphic. 

11. Suppose that/: X -> Y has degz (f) * O. Prove that/is onto. [Remem­
ber that X must be compact, Y connected, and dim X = dim Y for 
degz (f) to make sense.] 

12. If Y is not compact, then degz(f) = O for aIl maps I: X -> y (X com­
pact). 

13. If I: X -> Y is transversal to Z and dim X + dim Z = dim Y, then we 
can at least define Iz(!. Z) as #I- I (Z) mod 2, as long as/- I (Z) is finite. 
Let us explore how useful this definition is without the two assumptions 
made in the text :  X compact and Z closed. Find examples to show : 
(a) Iz(!, Z) may not be a homotopy invariant if Z is not closed. 
(b) Iz(!, Z) may not be a homotopy invariant if X is not compact. 
(c) The Boundary Theorem is false without the requirement that Z be 

closed. 
(d) The Boundary Theorem is false without the requirement that X be 

compact. 
(e) The Boundary Theorem is false without the requirement that W 

be compact, even if X = a w  is compact and Z is closed. [HINT: 
Look at the cylinder SI x R.] 

* 14. Two compact submanifolds X and Z in Y are cobordant if there exists 
a compact manifold with boundary, W, in Y x I such that a w  = 
X x {O} U Z x { I }. Show that if X may be deformed into Z, then X 
and Z are cobordant. However, the "trousers example" in Figure 2- 1 7  
shows that the converse i s  false. 

x 

Figure 2-17 
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* 15. Prove that if X and Z are cobordant in Y, then for every compact 
manifold C in Y with dimension complementary to X and Z, 12(X, C) 
= 12(Z, C). [HINT : Let I be the restriction to W of the projection map 
Y X 1 ->  Y, and use the Boundary Theorem.] 

16. Prove that deg2 (f) is well defined by direct application ofthe Boundary 
Theorem. [HINT : If YO' Y l E Y, alter I homotopically to getl ?R [Yo ,  yd. 
Now let c :  1 -+ Y be a curve with c(O) = Yo, c( l )  = Yh and define 
F : X x  1 ->  Y x  Y by/ x c. Examine aF.] 

--
17. Derive the Nonretraction Theorem of Section 2 from the Boundary 

Theorem. 

18. Suppose that Z is- a compact submanifold of Y with dim Z = t dim Y. 
Prove that if Z is globally definable by independent functions, then 
12(Z, Z) = O. [HINT: By Exercise 20, Section 3, N(Z; Y) = Z X Rk. 
Certainly 12(Z, Z) = O in Z X Rk, since Z x [a} lì Z is empty. Now 
use the Tubular Neighborhood Theorem, Exercise 1 6, Section 3.] 

19. Show that the centraI circIe X in the open Mobius band has mod 2 in­
tersection number 1 2( X, X) = l .  [HINT : Show that when the ends of the 
strip in Figure 2- 1 8  are glued together with a twist, X' becomes a mani­
foid that is a deformation of X.l 

x � 
.-/' 

X '  

Figure 2-18 

CorolIary to Exercises 1 9  and 20. The centraI circIe in the Mobius band is  
not definable by an independent function. 

§5 W i n d i n g  N u m bers a n d  

t h e  J orda n - B rouwer Separation Theorem 

The Classical Jordan Curve Theorem says that every simpie 
cIosed curve in R2 divides the pIane into two pieces, the "in si de" and "out­
side" of the curve. Lest the theorem appear too obvious, try your intuition on 
the exampie shown in Figure 2- 19 .  

This section is a self-guided expedition with gun and camera into the 
wiIds of such jungles, and i n  n dimensions, too ! Begin with a compact, con-
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Figure 2-19 

nected manifold X and a smooth map f: X ---> R". Suppose that dim X = 
n - I ,  so that, in particular, f might be the inclusion map of a hypersurface 
into R". (In generai, a hypersurface in a manifold is a submanifold of codi­
mension one.) We wish to study how f wraps X around in R", so take any 
point Z of R" not Iying in the imagef(X). To see how f(x) winds around z, 

we inquire how often the unit vector 

( )  f(x) - z u x = If(x) _ z l ' 
which indicates the direction from z to f(x) , points in a given direction. From 
Intersection Theory, we know that u :  X -> S"- I hits almost every direction 
vector the sa me number of times mod 2, namely, degz (u) times. So seize this 
invariant and define the mod 2 winding number offaround z to be Wz(J, z) = 
degz (u). (See Figure 2-20.) 

In a moment you will use this notion (i.e., mod 2 winding number) to 
establish a generalized version of the Jordan curve theorem, but first some 
exercises will develop a preliminary theorem. The proof introduces a beauti-

f(x) 

Figure 2-20 
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fully simple technique that appears repeatedly in later sections. Hints are 
provided at the end of the section, but it should be fun to fit the proof togeth­
er yourself. 

Theorem. Suppose that X is the boundary of D, a compact manifold with 
boundary, and let F :  D ---> Rn be a smooth map extendingf; that is, aF = f 
Suppose that z is a regular value of F that does not belong to the image of f 
Then F- I (Z) is a finite set, and Wz(J, z) '= #F-I (Z) mod 2. That is, j winds 
X around z as often as F hits z, mod 2. (See Figure 2-2 1 .) 

Twist -- Collapse 
--

W2 (f, z) = # F-l (Z) mod 2 = O 
Figure 2-21 

Here are some exercises to help you construct a proof: 

l. Show that if F does not hit z, then Wz(J, z) = O. 

2. Suppose that F- I (Z) = fYl >  . . .  , YI}, and around each point Yi let BI be 
a ball, (That is, Bi is the image of a ball in Rn via some local parametriza­
tion of D.) Demand that the balls be disjoint from one another and from 
X = aD. Letfl : aBI ---> Rn be the restriction of F, and prove that 

Wz(J, z) = WZ(fI ' z) + . . .  + Wz(f/> z) mod 2. 

(See Figure 2-22.) 

x 

Figure 2-22 

3. Use the regularity of z to choose the balls Bi so that WzCft, z) = l , and 
thus prove the theorem. 

Now assume that X actually is a compact, connected hypersurface in Rn. 
If X really does separate Rn into an inside and an outside, then it should be 
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the boundary of a compact n-dimensionai manifold with boundary-namely, 
its inside. In this case, the preceding theorem tells us that if Z E Rn is any point 
not on X, then W2(X, z) must be I or O, depending on whether z lies inside 
or outside of X. [Rere W2(X, z) is used for the winding number of the in­
clusion map of X around z.] The next exercises help you reverse this rea­
soning to prove the Separation Theorem. 

4. Let z E Rn - X. Prove that if x is any point of X and U any neighbor­
hood of x in Rn, then there exists a point of U that may be joined to z 
by a curve not intersecting X (Figure 2-23). 

Figure 2-23 

5. Show that Rn - X has, at most, two connected components. 

6. Show that if Zo and z I belong to the same connected component of 
Rn - X, then W2(X, zo) = W2(X, Zl)' 

7. Given a point z E Rn - X and a direction vector � E sn- I , consider 
the ray r emanating from z in the direction of �, 

r = [z + t� : t > O}. 

Check that the ray r is transversal to X if and only if � is a regular value 
of the direction map u :  X -> Sn- I . In particular, almost every ray from 
z intersects X transversally. 

8. Suppose that r is a ray emanating from Zo that intersects X transversally 
in a nonempty (necessarily finite) set. Suppose that Zl is any other point 
on r (but not on X), and let l be the number of times r intersects X be­
tween Zo and Z I ' Verify that W2(X, zo) = W2(X, Z l) + l mod 2. (See 
Figure 2-24.) 

9. Conclude that Rn - X has precisely two components, 

Do = [z : W2(X, z) = O} and DI = [z : W2(X, z) = I }. 
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Figure 2-24 

lO. Show that if z is very large, then W2(X, z) = o. 

11. Combine these observations to prove 

r 

89 

The Jordan-Brouwer Separation Theorem. The complement of the compact, 
connected hypersurface X in Rn consists of two connected open sets, the 
"outside" Do and the "inside" DI . Moreover, D I  is a compact manifold with 
boundary aDI = X. 

Note that we have actually derived a simple procedure for determining 
whether a given point z Iies inside or outside of X. 

12. Given z E Rn - X, Iet r be any ray emanating from z that is trans­
versaI to X. Show that z is inside X if and only if r intersects X in an odd 
number of points (Figure 2-25). 

Hints (Iisted by exercise number) 

1. lf u extends to D, then deg2 (u) = o. 

2. Use l ,  replacing D by 
I 

D' = D - U lnt (B;). 
i= t 

3. lf!t carries aB, diffeomorphically onto a small sphere centered at z, 
then u, : aB, ---> Sn- I is bijective. But f is a local diffeomorphism at 
Yi, so you can choose such Bi. 

4. Show that the points x E X for which the statement is true con­
stitute a nonempty, open, and cIosed set. (Closed : easy. Open : use 
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Figure 2-25 

coordinates making X look locally like a piece of Rn- I in  Rn. Non­
empty : consider the straight line joining z to the closest point in x.) 

5. Let B be a small ball such that B - X has two components, and fix 
points Zo and Zl in opposite components. Every point of Rn - X 
may be joined to either Zo or Z I by a curve not intersecting X. (We 
have not yet excluded the possibility that Zo and Z I may be so joined !) 

6. lf z, is a curve in Rn - X, then the homotopy 

u,(x) = I
X - z'l x - Z, 

is defined for all t. Thus Uo and UI have the same mod 2 degree. 
7. Either compute directly or use Exercise 7, Chapter I ,  Section 5. 

Note that if g :  Rn - {z} ---> Sn- I  is g(y) = y - z/l y - z I , then u :  X 
---> Sn- I is g composed with the inclusion map of X. So by the 
exercise cited, u ?fi {�} if and only if X ?fi  r l{�}. 

8. By Exercise 7, � is a regular value for both Uo and U I • But 

#Uii l (�) = #UJ I(�) + I. 

9. Exercise 8 implies that both Do and D I are nonempty. Now apply 
Exercises 5 and 6. 

lO. Since X is compact, when I z I is large the image u(X) on Sn- I lies in 
a small neighborhood of zii z I. 
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11. By Exercise I O, DI is compact, and D I = DI U X. Produce a IocaI 
parametrization of D I around a point x E X as follows : Let 
If/ : B -> Rn map a ball B around Olin Rn diffeomorphicaIIy onto a 
neighborhood of x in Rn, carrying B (ì Rn- !  onto X (ì If/(B). Use 
Exercises 4 and 6 to prove either that If/(B (ì Hn) c D! and 
If/(B (ì - Hn) c Do or the reverse. In either case, If/ restricts to a 
Iocai paramterization of D I around x. 

12. Combine Exercise 8 with Exercise I O. 

§6 The B orsuk- Ulam Theorem 

We shall use our winding number apparatus to prove another 
famous theorem from topology, the Borsuk-Ulam theorem. One form of it is 

Borsuk-Ulam Theorem. Let f: Sk -> RH ! be a smooth map whose image 
does not contain the origin, and suppose that f satisfies the symmetry condi­
tion 

f( -x) = -f(x) for all x E Sk, 

InformaIIy, any map that is symmetric around the origin must wind 
around it an odd number of times. 

Proo! Proceed by induction on k. For k = 1 ,  see Exercise 2. 
Now assume the theorem true for k - 1 ,  and let f: Sk -> Rk+ I - fO} be 

symmetric. Consider Sk- l  to be the equator of Sk, embedded by (x I >  • • •  , xk) 
-> (XI '  . . .  , Xk, O). The idea of the proof is rather like Exercise 1 2  in the 
previous section. We wiII compute Wz(f, O) by counting how oftenfintersects 
a line l in Rk+ l . By choosing l disjoint from the image of the equator, we can 
use the inductive hypothesis to show that the equator winds around l an odd 
number of times. Finally, it is easy to calculate the intersection of f with I 
once we know the behavior of f on the equator. 

Denote the restriction offto the equator Sk- I by g. In choosing a suitable 
line l, use Sard to select a unit vector � that is a reguiar value for both maps 

--L ' Sk- 1 � Sk and L ' Sk � Sk 
I g l ' I f l " 

From symmetry, it is cIear that - a is also a regular value for both maps. By 
dimensionai comparison, regularity for gli g I simply means that gli g I never 
hits � or - � ;  consequently, g never intersects the line l = R . � . We let you 
check that reguiarity for fii f I is equivalent to the conditionf ?R  l. (See Exer­
cise 7, Chapter 1 ,  Section 5.) 
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Now, by definition, 

( f ) ( f ) - 1 � W2(f, O) = deg2 m = # m (a) mod 2. 

Andf/I f I hits +� precisely as often as it hits -�, due to symmetry. Thus 

( f )-1 � _ I - I # m (a) - 2" #f (/). 

We can caIculate this result on the upper hemisphere alone. Letf+ be the re­
striction of f to the upper hemisphere S�, the points where Xk+ 1 > O. By 
symmetry, plus the fact thatf(equator) does not intersect /, we know that 

We conclude that W2(J; O) = #f-;.I (I) mod 2. 
The virtue of the latter expression for W2(f, O) is that the upper hemi­

sphere is a manifold with boundary, and on its boundary as� = Sk- I  we can 
use the inductive hypothesis. However, the dimensions are not correct for ap­
plying the inductive hypothesis to the map g :  Sk- I ---. Rk+ I .  So let V be the 
orthogonal complement of /, and let n :  Rk+ 1 ---. V be orthogonal projection. 
Since g is symmetric and n is Iinear, the composite n o g :  Sk- I ---. V is 
symmetric ; moreover, n o g is never zero, for g never intersects n- I (O) = /. 
Identify the k-dimensional vector space V with Rk and invoke the inductive 
hypothesis :  W 2(n o g, O) = I .  

Now sincef+ ?R /, 

is transversal to (O}. So by the first theorem of the preceding section, 

But 

So 
Wlf, O) = #f-;.I(/) = W2(n o g, O) = I mod 2. Q.E.D. 

One very simple geometrical observfltion is c1ear from the proof. 

Tbeorem. lf f: Sk ---. Rk+ 1 - (O} is symmetric about the origin (f( -x) = 

-f(x» , thenfintersects every line through O at least once. 

Proof lf f never hits /, then use this l in the proof, obtaining the contradic­
tion 
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This theorem has a number of surprising consequences, such as 

Theorem. Any k smooth functionsfl , . . .  .Jk on Sk that alI satisfy the sym-
metry condition fl-x) = -/;(x), j = l ,  . . .  , k, must possess a common 
zero. 

Prool If not, apply the corolIary to the map 

taking the Xk+ I axis for I. 

We may rephrase the statement as 

Theorem. For any k smooth functions gl ' . . .  , gk on Sk there exists a point 
p E Sk such that 

Prool Convert to above by setting 

/;(x) = gl(x) - gl-x). Q.E.D. 

A meteorological formulation of this result (for S2) is that at any given 
time there are two places in the world, at opposite ends of the earth from each 
other, having exactly the same weather (i.e., exactly the same temperature 
and pressure). Here's another verbalization of the theorem: if a balloon is 
defiated and laid on the fioor, two antipodal points end up over the same point 
of the fioor. 

EXERCISES 

1. Show that the Borsuk-Ulam theorem is equivalent to the folIowing 
assertion : if f: Sk -> Sk carries antipodal points to antipodal points, 
then deg2 (f) = l .  

2. Prove that any map f: SI -> SI mapping antipodal points to antipodal 
points has deg2 (f) = l by a direct computation with Exercise 8, Section 
4. [HINT : If g : R -> R is as in Exercise 8, Section 4, show that 

g(s + n) = g(s) + nq, 

where q is od d.] 

3. Let PI ,  . . .  , Pn be real homogeneous polynomials in n + l variables, alI 
of odd order. Prove that the associated functions on Rn+ I simultaneously 
vanish along some line through the origino 
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Oriented 

I nte rsection  Theory 

§1 M otivation 

Mod 2 intersection theory lacks the delicacy required for dis­
criminations of any subtlety, but careful reexamination suggests a refinement. 
Suppose that/: X -> Y is transversal to a submanifold Z of dimension com­
plementary to X (dim X + dim Z = dim Y) alI three being boundaryless 
manifolds and X compact. Then I- ' (Z) is a finite set whose cardinality we 
called the "provisional intersection number" of I with Z. In order to make 
intersection numbers an invariant of homotopy, we discarded alI the informa­
tion carri ed by the provisional number #I- ' (Z) except for one bit, its parity 
(even or odd). 

Recall the reasoning. If 10'/, : X -> Y are homotopic and both transversal 
to Z, there exists a homotopy F :  X x 1 ->  Y that is also transversal. F- ' (Z) 
then consists of some circles interior to X x I, plus a few curves joining in 
pairs the points of 

aF- '(Z) = /o ' (Z) x fO} u /1 ' (Z) x f l }. 

(See Figure 3- 1 .) So although #/o ' (Z) and #/. ' (Z) need not be equal, at 
least they are both even or both odd ; hence 12(/0, Z) = 12(/" Z). 

But look more closely. Some curves join points in opposite ends of the 
cylinder X x I and thus actualIy serve to compare #/o ' (Z) and #/. ' (Z), 

94 
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Figure 3-} 

whereas other curves join points in the same end. In order to extract a homo­
topy invariant from the provisional data, we really only need cancel the con­
tributions of any linked pairs of points that lie in the same end. 

The difficulty is to recognize beforehand which points must be discarded. 
When we only have the one map f, can we tell how many points of f- I (Z) 
will be joined by a homotopy ? And is this cancellation factor the same for 
every possible homotopy ? Both answers are affirmative, as subsequent sec­
tions will prove. The additional technique, involving some easy linear algebra, 
consists of little more than keeping track of a few plus and minus signs. Such 
bookkeeping always requires a little care and patience, but the rewards more 
than compensate for the minor annoyance. 

§2 Orientation 

Suppose that V is a finite-dimensionaI real vector space and p = 
{v l '  . . . , vd is an ordered basis. If P' = {V'I ' . . .  , v�} is another ordered basis, 
then there is a unique l inear isomorphism A :  V · · -> V such that P' = Ap 
(where Ap denotes the ordered basis {Av I ,  . . .  , Avk}). We shalÌ say that P 
and P' are equiva/ent/y oriented if the determinant ofthis linear transformation 
A is positive. Thanks to the product rule for determinants, this procedure 
defines an equivalence relation partitioning the set of ali ordered bases for V 
into two classes. 

An orientation of V is an arbitrary decision to affix a positive sign to the 
elements of one equivalence class and a negative sign to the others. The sign 
given an ordered basis P is called its orientation, so P is either positively 
oriented or negative/y oriented, depending on which equivalence class it be­
longs to. There are precisely two possible orientations for V, and in  order to 
distinguish between them it suffices merely to specify the sign of any single 
ordered basis. For example, the standard orientation of Euclidean space is 
the one for which the standard ordered basis is positively oriented. (Notice 
that the ordering of basis elements is essential. Interchanging the positions of 
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any two basis veetors in p produees a different ordered basis with opposite 
orientation. ) 

A separate definition is required for the zero-dimensionai veetor spaee. 
Here an orientation is just a ehoiee of sign + I or - I  assoeiated, if you like, 
with "the empty basis." 

If A :  V -> W is an isomorphism of veetor spaees, then whenever two or­
dered bases p and P' on V belong to the same eq uivalenee cIass, so do the two 
ordered bases Ap and Ap' on W. Thus if both Vand W are oriented, meaning 
that an orientation is speeified for both, the sign of AP is either always the 
same as the sign of P or always opposite. That is, A either preserves or re­
verses orientation. 

Now return to manifolds. An orientation of X, a manifold with boundary, 
is a smooth ehoice of orientations for alI the tangent spaees TAX). The 
smoothness eondition is to be interpreted in the folIowing sense : around eaeh 
point x E X there must exist a loeal parametrization h :' U -> X, sueh that 
dhu : Rk -> ThCu)(X) preserves orientation at eaeh point U of the domain U c 
Hk• (The orientation on Rk is implieitly assumed to be the standard one.) 
A map like h whose derivative preserves orientations at every point is simply 
ealled an orientation-preserving map. Not ali manifolds possess orientations, 
the most famous example being the Mobius strip. You are invited to make a 
paper model and "prove" pietorialIy that no smooth orientation of the 
Mobius strip exists. The diffieuIty is that if you walk around a transparent 
strip pitehing pennies heads up, eventualIy you return to the starting point to 
find tails up ! (See Figure 3-2.) 

For zero-dimensionai manifolds, orientations are very simple. To eaeh 
point x E X we simply assign an orientation number + )  or - ) ,  there being 
no question of smoothness. 

X is orientable if it may be given an orientation. If so, then X obviously 
admits at least two distinet orientations, for if one is speeified we need only 

Figure 3-2 
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reverse the orientations of each tangent space to obtain an opposite orienta­
tion. 

Proposition. A connected, orientable manifold with boundary admits exact­
ly two orientations. 

Proof We show that the set of points at which two orientations agree and 
the set where they disagree are both open. Consequently, two orientations of 
a connected manifold are either identical or opposite. So let h :  U ----> X, 
h' : U' ----> X be local parametrizations around x E X such that dhu preserves 
the first orientation and dh�, preserves the second, for al1 U E U, U' E U'. 
We may assume h(O) = x = h'(O), and h(U) = h'(U'). Then ifthe two orien­
tations of Tx(X) agree, d(h- I o h')o : Rk ----> Rk is orientation preserving. Thus 
d(h- I o h')u' has positive determinant at u' = O, and the continuity of the 
determinant function implies that it has positive determinant for u' in a neigh­
borhood of O. Arguing back, this says that the two orientations agree in a 
neighborhood of X. Similarly, if the two orientations disagree at x, then 
d(h- I o h')u' is negative near O, so the orientations must be opposite in a neigh­
borhood of X. Q.E.D. 

By an oriented manifo/d, we mean a manifold together with a specified 
smooth orientation. If X is oriented, we shal1 symbolically denote the orient­
ed manifold obtained by reversing the orientation on X as - X. Thus the 
foregoing proposition says that if X is connected, the only two orientations 
on' the underlying manifold are those of X and - X. 

If X and Y are oriented and one of them is boundaryless, then X X Y 
acquires a product orientation as follows. At each point (x, y) E X X Y, 

Let rt = {VI ' . . .  , vd and p = {Wl ' . . . , wa be ordered bases for Tx(X) and 
for Ti Y), respectively, and denote by (rt X O, O X P) the ordered basis 
{(VI > O), . . .  , (Vb O), (O, Wl), . . .  , (O, Wl)} of Tx(X) X Ty( Y). Define the orien­
tation on T x( X) X Ti Y) by setting 

sign (rt X O, O X p) = sign (rt) sign (P). 

Check that this orientation does not depend on the choice of rt and p. 
An orientation of X natural1y induces a boundary orientation on a x. At 

every point x E X, TxCaX) has codimension l in Tx(X). Therefore there are 
precisely two uni t vectors in Tx(X) that are perpendicular to Tx(aX) ; one 
points inward and one points outward. More precisely, if h :  U ----> X is a 
locai parametrization around x, U being open in Hk and h(O) = u, then 
(dho)- I : Tx(X) ----> Rk carries one unit normai vector into H\ the inward 
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unit normal, and carries the other into -Hk, the outward unit normal 
(Figure 3-3). You checked that this distinction is independent of the choice 
of h in Exercise 7, Chapter 2, Section l .  We denote the outward unit normal 
at x by nx. Now orient Tx(aX) by declaring the sign of any ordered basis p = 
{VI " ' " vk- I} to be the sign of the ordered basis {nx, PJ = {nx, VI , . · . , vk- d 
for Tx(X). It is easy to check that this procedure smoothly orients each Tx<aX) 
and thus defines an orientation of ax. 

As an example, the closed unit ball B2 in R2 inherits the standard orienta­
tion from R2. The induced orientation on SI is the one for which the counter­
clockwise-pointing vectors are positive. (See Figure 3-4.) 

A particularly important example (Figure 3-5) is the homotopy space 
X x I or, more conveniently for the moment, I x X. For each t E I, the slice 
X, = {t} x X is naturally diffeomorphic to X, so let us orient X, in order to 

n x= ( - I ,O) 

· · , , , , , 

· · · . 

Hl. 

Figure 3-3 

Figure 3-4 

V2 
LVI 
Positive 

orientation 

[ X X  

Figure 3-5 

h 

Outward unit normal 
nx 

x 
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make this diffeomorphism x -> (t, x) orientation preserving. Now a(I X X) 
is, as a set, XI U Xo ; but what is its boundary orientation ? Along XI ' the 
outward-pointing normai vector is nO,x) = ( I ,  O) E TI (I) X TAX). Any 
ordered basis for To,x)(XI) is ° X p, where p is an ordered basis for Tx(X). 
By definition of the boundary orientation, 

sign (O X fi) = sign (no ,X)' ° X P), 

whereas by the definition of the product orientation, 

sign ( l  X 0, ° X P) = sign ( l )  sin (fi) = sign (P). 

This result shows that the boundary orientation on XI equais its orientation 
as a copy of X. However, along Xo, the outward-pointing normai is n(O,x) = 
(- 1 ,  O). So the sign of the basis ° X P for T(o,x)(Xo) in the boundary orienta­
tion on Xo equais 

sign (- l X 0, ° X fi) = sign (- l )  sign (fi) = -sign (fi). 
Thus the boundary orientation on Xo is the reverse of its orientation as a copy 
of X. 

We conclude that as an oriented manifold, a(/ X X) = XI U (-Xo)' We 
shall adopt for this union the suggestive symbolism 

If dim X = l ,  then a X is zero dimensionaI. The orientation of the zero­
dimensionaI vector space Tx<aX)is equai to the sign of the basis {nx} for Tx(X). 
Consider, in particular, the compact intervai X

' 
= [O, 1 ]  with its standard 

orientation inherited from R l . At x = 1 ,  the outward normai vector is 
l E RI = TI(X), which is positively oriented, and at x = ° the outward 
normai is the negatively oriented - 1  E RI = To(X). Thus the orientation 
of TI(aX) is + l ,  and the orientation of To(aX) is - 1 . 

o 
• 

-­
Positive 

orientation 

I • 

Reversing the orientation on [O, l ]  simply reverses the orientations at each 
boundary point. Now Iet X be any compact oriented one-manifold with 
boundary. Since the boundary points of X are connected by diffeomorphic 
copi es of the intervai (thanks to the theorem classifying one-manifolds), we 
have 
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Observation. The sum of the orientation numbers at the boundary points of 
any compact oriented one-dimensional manifold with boundary is  zero. 

Thus orientation numbers are precisely the artifice needed to refine inter­
section theory. But first we must put orientations on transversal preimages. 
To do so, we shaII use the foIIowing simple observation. Suppose that V = 
VI EB V z is a direct sum. Then orientations on any two of these vector spaces 
automaticaIIy induces a direct sum orientation on the third, as foIIows. Choose 
ordered bases PI and pz for VI and Vz, respectively, and Iet p = (PI ' pz) be 
the combined ordered basis for V. Now simply demand that sign (P) = 
sign (P, ) · sign (pz). Since the two spaces are oriented, this procedure uniquely 
affixes a sign to one ordered basis for their sum, and thereby determines an 
orientation of the sum. We let you check that different choices of PI and pz 
would induce the same orientation. But note that the order of the summands 
VI and Vz is crucial, for (PI ' pz) may not be equivalent in orientation to 
(Pz, PI). 

Now letf: X ---> Y be a smooth map withf ?R Z and af ?R Z, where X, Y, 
and Z are all oriented and the Iast two are boundaryless. We define a preimage 
orientation on the manifold-with-boundary S = f-' (Z). Ifj(x) = Z E Z, then 
Tx(S) is the preimage of Tz(Z) under the derivative map dfx : Tx(X) ---> 
Tz( Y). Let Nx(S; X) be the orthogonal complement to Tx(S) in Tx(X). Then 

so that we need only choose an orientation on Nx(S; X) to obtain a direct 
sum orientation on Tx(S). 

Because 

and TAS) is the entire preimage of Tz(Z), we get a direct sum 

Thus the orientations on Z and Y induce a direct image orientation on 
dlxNx(S; X). But Tx(S) contains the entire kernel of the linear map dlx, so dix 
must map Nx(S; X) isomorphically onto its image. Therefore the induced 
orientation on dlxNx(S; X) defines an orientation on Nx(S; X) via the iso­
morphism dix . 

AlI this discussion serves to define orientations on each tangent space 
Tx(S) ; we leave the verification of smoothness to you. (But smoothness should 
be rather obvious, since the construction used only some algebra plus the 
smoothly varying map dix.) Unscrambling the formalities and developing a 
feeling for the preimage orientation are a matter of struggling through a few 
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calculations, so some examples are included in the exercises. For reference, 
here again are the two direct sum equations that define the preimage orienta­
tion. (The ordering of summands is important !) 

where S = f- I (Z). 

dfxNx(S; X) EB T.(Z) = T.(Y) 

Nx(S; X) EB Tx(S) = Tx(X), 

Our use of Nx(S; X), the orthogonal complement of Tx(S) in Tx(X), 
was only for convenient definiteness. In fact, if H is any other subspace of 
Tx(X) complementary to Tx(S), then the two direct sums 

dfxH EB T.(Z) = T.(Y) 

H EB Tx(S) = Tx(X) 

define the same orientation on Tx(S). Checking this is a matter of simple al­
gebra, which we leave for Exercise 28. 

Let us prove an important property of our definitions. Suppose that we 
have a map j:  X -----> Y as above, where j ifi Z, af ifi Z, the manifolds are 
oriented, and only X has boundary. Then the manifold af- I (Z) acquires two 
orientations-one as the preimage of Z under the map af : ax -----> Y, and a 
second as the boundary of the manifoldj- I (Z). It turns out that these orienta­
tions differ by the sign (-1  )codim z. The proof is a good exercise in under­
standing the definitions ; in fact, j ust figuring out the statement is a valuable 
endeavor. 

Proposition. a[f- I (Z)] = (_ J )COdim Z(af)- I (Z). 

Proo! Denote j- I (Z) by S, as above. Let H be a subspace of T)aX) com­
plementary to Tx(aS), so 

(Figure 3-6.) Note that H is also complementary to Tx(S) in Tx(X) ; simply 
compare dimensions, noting that H must be disjoint from Tx(S) because 

So we may use H to define the orientation of both S and as at x. (Here we 
need Exercise 28.) Since H c Tx(aX), the maps dfx and d(af)x agree on H. 
Thus H is assigned the same orientation under the two maps, via the direct 
sum dfxH EB Tz(Z) = Tz( Y). Now that H is oriented, the orientation of S 
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Figure 3-6 

induced by I is defined by H EB Tx(S) = Tx(X), and the orientation of as 
induced by al is defined by H EB Tx(aS) = Tx(aX). 

Let nx be the outward unit vector to as in S, and Iet R · nx represent the 
one-dimensionaI subspace spanned by nx, oriented so that {nJ is a positiveIy 
oriented basis. UnfortunateIy for our computation, nx need not be perpen­
dicuIar to alI of Tx(aX). NonetheIess, we claim that the orientations of Tx(aX) 
and Tx(X) are reIated by the direct sum 

We Ieave you to check this ; just note that nx is an outward-pointing vector, 
and use Exercise 27. 

Into the equation 

insert the formuIas for the preimage orientations of S and as, obtaining 

Since l = dim H transpositions are required to move nx from the Ieft to the 
right of an ordered basis for H, the direct sum on the right has (- I Y times 
the orientation of H EB  R·nx EB T)aS). Thus Tx(S) must have (- IY  times the 
orientation of R· nx EB Tx(aS) when as is given its preimage orientation. But, 
by definition, when as is given the boundary orientation, then Tx(S) has ex­
actIy the orientation of R .nx EB Tx<aS). Conclude that the preimage and 
boundary orientations of Tx(aS) must differ by (- 1 )1. Since 

l = dim H = codim S = codim Z, 

we are done. Q.E.D. 
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EXERCISES 

1. Prove that the relation of being "equivalently oriented" is indeed an 
equivalence relation on ordered bases. 

*2. Let p = {VI '  • . •  , vk} be an ordered basis for V. Show that : 
(a) replacing one VI by a multiple CVI yields an equivalently oriented 

ordered basis if C > O, an oppositely oriented one if C < O. 
(b) transposing two elements (i .e., interchanging the places of VI and 

Vj' i =F j) yields an oppositely oriented ordered basis. 
(c) subtracting from one VI a linear combination of the others yields an 

equivalently oriented ordered basis. 

3. A sequence of linear maps of vector spaces 

is exact if 

i = l ,  . . . , n. 

Thus exactness of O ----> U ..:!.. V !!'-' W ----> O means that A is injective, B 
surjective, and Image (A) = Kernel (B). Such a sequence is called a 
short exact sequence. Show how orientations of any two vector spaces 
in a short exact sequence automatical1y determine an orientation on the 
third. [HINT : Proceed as in the special case of direct sum orientations, 
in which V = U EB w.] 

*4. Suppose that V is the direct sum of VI and V2• Prove that the direct 
sum orientation from VI EB V2 equals (_ l)<dim V,) (dim V,) times the orien-
tation from V2 EB VI ' 

5. Prove that boundary orientations are smooth. (See Exercise 7, Chapter 
2, Section l .) 

*6. Hk is oriented by the standard orientation of Rk. Thus aHk acquires a 
boundary orientation. But aHk may be identified with Rk- I .  Show that 
the boundary orientation agrees with the standard orientation of Rk- I 
if and only if k is even. Symbolically, we may express this as aHk = 
(- I )kRk- l .  

7. Specifical1y write down the orientation of S2 (as the boundary of B3), 
by writing a positively oriented ordered basis for the tangent space at 
each (a, b, c). 
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8. Define a function f: S2 --> R by f(x, y, z) = z. For the regular values 
- I  < t < 1 ,/- 1  (t) are the longitude circIes at height t. What are their 
orientations ? [Explicitly exhibit a positively oriented vector at a typical 
point off- I (t).] 

9. Prove that the boundary orientation of Sk = aBk+ l is the same as its 
preimage orientation under the map 

g :  Rk+1  ---+ R, 

lO. Suppose thatfis a smooth function on RI , and let X c R2 be its graph 
X = {(x,j(x))}. SpecificalIy write down the orientation of X as the 
preimage of O under the map 

F : R2 ---+ R, F(x, y) = f(x) - y. 

[HINT : T(x,y)(X) is spanned by v = ( I ,/'(x)). So the normal direction to 
X is spanned by n = (-f'(x), I ). Is v or -v positively oriented ?] 

11. SimilarIy, letfbe a smooth function on R2, and let S e  R3 be its graph 
S = {(x, y,j(x, y))}. Explicitly determine the orientation of S under the 
map 

F:  R3 ---+ R, F(x, y, z) = z - f(x, y). 

[HINT: T(x,y,z)(S) is spanned by 

so the normal line is spanned by 

( aF aF ) n = -ax (x, y), -ay (x, y), l . 

Is {v" v2} or {v2, VI } positively oriented ?] 

12. Suppose that f: X --> Y is a diffeomorphism of connected oriented 
manifolds with boundary. Show that if dfx : Tx(X) --> Tf(x)( Y) preserves 
orientation at one point x, thenfpreserves orientation globalIy. 

* 13. Prove that every compact hypersurface in Euclidean space is orientable. 
[HINT : Jordan-Brouwer Separation Theorem.] 

* 14. Let X and Z be transversal submanifolds of Y, alI three being oriented. 
Let X n Z denote the intersection manifold with the orientation pre-
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scribed by the inclusion map X -->�.y. Now suppose that 

dim X + dim Z = dim Y, 

so X n Z is zero dimensionaI. Then at any point y E X n Z, 

Check that the orientation number of y in X n Z is  + l if the orienta­
tions of X and Z add up-in the order of the above sum-to the orienta­
tion of Y, and - l  if not. 

15. If dim X + dim Z = dim Y and X m Z, prove that 

X n Z = ( _ l )(dim X) (dlm Z)Z n X. 

16. Now drop the assumption of dimensionaI compiementarity. Prove that 
whenever X m Z in Y, the two orientations on the intersection manifoid 
are reiated by 

X n Z = ( _ l)(codim X)(codim Z) Z n X. 

Note that whenever X and Z do have complementary dimensions, then 
(codim X)(codim Z) = (dim X)(dim Z). [HINT : Show that the orienta­
tion of S = X n Z is specified by the formula 

But for Z n X, the first two spaces are interchanged.] 

17. Compute the orientation of X n Z in the following examples by ex­
hibiting positively oriented bases at every point. [By convention, we 
orient the three coordinate axes so that the standard basis vectors are 
positiveIy oriented. Orient the xy piane so that ((1 ,  0, O), (O, l ,  O)} is 
positive and the yz piane so that ( 0, l, O), (0, 0, l )} is positive. Finally, 
orient SI and S2 as the boundary of B2 and B3, respectively.] 
(a) X = x axis, Z = y axis (in R2) 
(b) X = SI , Z = y axis (in R2) 
(c) X = xy-plane, Z = z axis (in R3) 
(d) X = S2, Z = yz piane (in R3) 
(e) X = SI in xy pIane, Z = yz piane (in R3) 
(f) X = xy pIane, Z = yz pIane (in R3) 
(g) X = hyperboloid X2 + y2 - Z2 = a with preimage orientation 

(a > O), Z = xy pIane (in R3) 
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*18. Suppose that Z is a hypersurface in the oriented manifold Y, a sub­
manifold of codimension l .  Prove that the following statements are 
equivalent : 
(a) Z is orientable. 
(b) There exists a smooth field of normal vectors �(z) along Z in Y. 
(c) The normal bundle N(Z; Y) is trivial. 
(d) Z is globally definable by an independent function ; that is, there is 

a smooth function O on a neighborhood of Z such that 0-1 (O) = Z, 
and dO is nonzero at every point of Z. 

[HINT : For (a) ( =) (b), mimic the definition of boundary orientations. 
(b) ( =) (c) is a trivial verification. For (c) (=) (d), see Exercise 20, 
Chapter 2, Section 3.] 

* 19. Suppose that Z is an òriented hypersurface in the oriented manifold Y, 
and let � be a smooth field of unit normal vectors along Z in Y. Note 
that � defines an orientation in each normal space Nz(Z; Y)-namely, 
the orientation in which the vector �(z) is a positively oriented basis. 
Show that if the direct sum orientation on Nz(Z; Y) 8j Tz(Z) and the 
orientation of Tz( Y) agree at one point Z E Z, then they agree in the 
entire connected component of Z containing z. Show that there is 
precisely one choice of � for which the orientations always agree ; we 
shall cali this � the outward unit normalfield along Z. (For the case of 
a surface in R3, physicists say that � conforms to the "right-hand rule.") 
Check that for boundary orientations this is the usual outward norma!. 

20. Prove that the Mobius band is not orientable. [HINT : The centraI circle 
is orientable. Now use Exercise 1 8, plus Exercise 19 of Chapter 2, 
Section 4.] 

21. Prove that the Mobius band cannot be globally defined in R3 by an in­
dependent function. 

22. Let V be a vector space. Show that both orientations on V define the 
sa me product orientation on V x V. 

23. Let X be an orientable manifold. Show that the product orientation on 
X x X is the same for ali choices of orientation on X. (See Exercise 22.) 

24. Suppose that X is not orientable. Prove that X X Y is never orientable, 
no matter what manifold Y may be. [HINT : First show that X X RI is 
not orientable. But every Y has an open subset diffeomorphic to RI.] 

25. Prove that there exists a natural orientation on some neighborhood of 
the diagonai a in X X X, whether or not X can be oriented. Compare 
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this with Exercises 23 and 24 and the fact that à itself is orientable if 
and only if X is .  [HINT : You can cover a neighborhood of à by local 
parametrizations if> x if> :  U X U --> x x X, where if> :  U --> X is a 
local parametrization of X. Apply Exercise 23 to U X U.] 

26. Prove that every simply connected manifold X is orientable. [HINT : 
Pick an "origin" x E X, and choose an orientation for the single space 
Tx(X). If y E X, orient T/X) as follows. Choose a sequence of open sets 
U l ,  . . .  , Ui' each UI diffeomorphic to an open ball in Rk, such that each 
UI n UI+ l "* p, and x E U l ' Y E UI. Successively orient the sets UI' 
and show that the orientation induced on Ty(X) from UI does not de­
pend on the choice of the UI.] 

27. The definition of boundary orientation uses the outward unit normal 
nx to ax at x. Show that perpendicularity is unnecessary. That is, if 
hx E TAX) is any other vector pointing outward, then it defines the 
same orientation as nx. ("Outward pointing" is defined without per­
pendicularity assumptions ; see Exercises 7 and 8 of Chapter 2, Section 
I .) [HINT : Show that hx = cnx + v, where v E Tx(aX) and c >  o.] 

28. Similar to Exercise 27, show that orthogonality is not needed in defining 
preimage orientations. Specifically, if 

then this equation, plus 

defines the same preimage orientation as defined by the orthogonal com­
plement. 

§3 Oriented I ntersection N u mber 

We are prepared now to reconstruct intersection theory. The 
setting is the same as for mod 2 theory : X, Y, and Z are boundaryless mani­
folds, X is compact, Z is a c10sed submanifold of Y, and dim X + dim Z = 
dim Y. Now, however, we shall work exclusively with oriented manifolds. 
(Occasionally we will capsulize these hypotheses in the phrase ''/: X --> Y 
and Z are appropriate for intersection theory.") 

If f: X --> Y is transversal to Z, thenf- l (Z) is a finite number ofpoints, 
each with an orientation number ± I provided by the preimage orientation. 
Define the intersection number I(j, Z) to be the sum of these orientation 
numbers. 
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The orientation number at a point x E f- I (Z) is quite simple. For iff(x) 
= Z E Z, then transversality plus dimensionaI complementarity give a direct 
sum 

Now dfx must be an isomorphism onto its image, so that the orientation of X 
provides an orientation of dfxTx(X). Then the orientation number at x is 
+ I if the orientations on dfJAX) and Tz(Z) "add up" to the prescribed 
orientation on Y (in that order !), and - I  if no1. 

The observation in the last section about one-manifolds is the key to the 
essential homotopy invariance of our definition. First, suppose that X is the 
boundary of a compact W and that f extends in some manner to a mapping 
F :  W ---> Y. By the Extension Theorem, we may assume F in Z. Thus F- I (Z) 
is a compact oriented one-manifold with boundary aF- I (Z) = f- I (Z). Con­
sequentIy, the sum of the orientation numbers at points in f- I (Z) must be 
zero, and we have proved 

Proposition. If X = a w  and f: X ---> Y extends to W, then l(/, Z) = O 
( W  compact). 

In particular, suppose thatfo andfl are homotopic and both transversal 
to Z. Then if F :  l x X ---> Y is a homotopy between them, we know that 
l(aF, Z) = O. But a(I x X) = XI - Xo, and via the natural identifications 
of Xo and XI with X, aF equalsfo on Xo andfl on XI . It follows that 

so 

l(aF, Z) = 1(/1 >  Z) - 1(/0, Z). 

This result proves 

Proposition. Homotopic maps always have the same intersection numbers. 

So far the statement only has meaning for maps transversal to Z. But as 
in the mod 2 theory, this homotopy invariance allows us to extend intersec­
tion theory to arbitrary maps. Given any g : X ---> Y, select a homotopic map 
fthat is transversal to Z, and define l(g, Z) = I(/, Z). As we have just shown, 
any other choice offmust provide the same number. Note that the two previ­
ous propositions are automatically true for arbitrary maps as well as trans­
versai ones. (Examples in a moment.) 

When Y is connected and has the same dimension as X, we define the 
degree ofan arbitrary smooth mapf: X ---> Yto be the intersection number of 
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I with any point y, deg (f) = l(f, {y D. Our proof that 12(f, {y D is the same for 
alI points y E Y works perfectly well for the oriented theory, so deg (f) is 
acceptably defined. Later in  the section we shall also deduce this fact from 
more generai technical considerations. Notice that in order to ca\culate 
deg (f), one simply selects any regular value y and counts the preimage points 
{x:/(x) = y}, except that a point x makes a contribution of + 1 or - I  to the 
sum, depending on whether the isomorphism dix : Tx(X) -----> Ty( Y) preserves 
or reverses orientation. 

Degree is defined as an intersection number, so it must automaticalIy be 
a homotopy invariant. To understand the way in which the canceling effect 
of orientation numbers converts the raw preimage data into a homotopy in­
variant, we suggest you draw a few pictures. For example, one can create 
many maps of SI into itself by smoothly deforming the circ\e inside the piane 
and the projecting back onto SI (Figure 3-7). Since such a map is homotopic 
to the identity, its degree must be + 1 .  Look at the preimage of various regular 
values to verify this fact. (What are the criticai values ?) 

Figure 3-7 

Another c\ass of interesting maps of the circ\e involves the restrictions of 
the complex monomials z -----> zm. When m >  O this wraps the circ\e uniformly 
around itself m times preserving orientation. The map is everywhere regu­
lar and orientation preserving, so its degree is the number of preimages of any 
point-namely, m. (You should be able to prove these assertions easily by 
ca\culating with local parametrizations. We suggest using local parametriza­
tions derived from the map e -----> (cos e, sin e) of RI -----> SI .) Similarly, when 
m < O the map is everywhere regular but orientation reversing. As each point 
has 1 m 1 preimages, the degree is -I m 1 = m. FinalIy, when m = O the map is  
constant, so its degree is zero. (By contrast, the mod 2 theory gives only m 
mod 2.) 
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One immediate consequence of this calculation (which could not have 
been proven with mod 2 theory) is  the interesting fact that the circle admits 
an i nfinite number of homotopicalIy distinct mappings, for since deg (zm) = 
m, none �f these maps can be homotopic to another one. 

The extendability theorem for intersection numbers specializes to the 
folIowing statement about degrees .  

Proposition. Suppose thatf: X ----> Y is a smooth map of compact oriented 
manifolds having the same dimension and that X = aw (W compact). If 
f can be extended to alI of W, then deg (I) = o. 

We may now complete an item left unfinished by the mod 2 theory. For 
any complex polynomial p(z) of order m, we showed earlier that on a circle 
S of sufficientIy large radius r in the pIane, 

p(z) zm ( Z )m 
I p(z) 1 and I zm l = r 

are homotopic maps of S ----> SI . Thus pii p I must have the sa me degree as 
(zlr)m-namely, m. When m >  O we conclude that pii p I will not extend to the 
whole disk of radius r, implying that p must have a zero inside the disk. This 
proves 

The Fundamental Theorem or Algebra. Every nonconstant complex poly­
nomial has a root. 

We can refi ne this argument to obtain more detailed information about 
the zeros of p. At any point Zo E C, we may factor 

p(z) = (z - zoYq(z), 

where q(zo) *- O. Of course, p(zo) = O precisely when l > O, in which case l 
is called the multiplicity of the zero zoo 

Proposition. Let W be a smooth compact region in C whose boundary con­
tains no zeros of the polynomial p. Then the total number of zeros of p 
inside W, counting multiplicities, is the degree of the map p/I p I :  a W ----> SI . 

Proof By a "smooth compact region" we simply mean a compact two­
submanifold with boundary. A trivial theorem from algebra says that p has 
only finitely many roots, zo, . . . , Zn, in W. Around each z{ circumscribe a 
small closed disk D{, making the disks alI disjoint from each other and from 
the boundary. Then p/I p I is defined on 

W' = W- U D{. {=o 
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Figure 3-8 

Note that the orientation of a Di as part of the boundary of W' is opposite to 
its usual orientation as the boundary of Di> for the outward-pointing normal 
vector for W' is the inward-pointing normal vector for DI (Figure 3-8). Thus, 
as oriented manifolds, 

aW' = aw - U aDI' 
1= 0  

Since the degree of  p/l p l  is zero on aw', we conclude that its degree on W 
equals the sum of its degrees on the oriented circles aDj• 

We complete the proof by showing that the degree of p/lp l :  aDI ----> SI 
is the muItiplicity of the zero of p at Zi' Write 

p(z) = (z - ZiYq(Z), 

where q(zJ =1= O. Since p has no zero in Dj other than ZI, q can never be zero 
in Di' lf r is the radius of DI, then g :  SI ----> aDj, defined by g(z) = Zi + rz, 
is an orientation-preserving diffeomorphism of SI onto a Dj. Thus the degree 
of p/I p I : a DI .---> SI equals the degree or p o gli p o g I : SI ----> SI . Define a 
homotopy h, : SI ----> SI by 

h (z) = Zlq(Zi + trz) , I q(zi + trz) 1 

(Division is admissible, since Zj + trz E Dj.) Now 

while 

p o g hl = I l ' p o g 

where c is the constant q(z/)/I q(zl) I. Since deg (ho) = l, conclude that deg (hl) 
= l. Q.E.D. 
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Let us shift our view to a different special instance of intersection theory. 
When X also happens to be a submanifold of Y, then, as in the mod 2 case, 
we define its intersection number with Z, /(X, Z), to be the intersection num­
ber of the inclusion map of X with Z. lf X ?R Z, then /(X, Z) is calculated by 
counting the points of X n Z, where a point y is included with a plus sign 
if the orientation of X and Z (in that order !) "add up" at y to the orientation 
of Y; otherwise y is counted with a minus sign (Figure 3-9). 

x 

x 

Figure 3-9 

Two circles on the torus 

I(X, Z) = -I (Z, X )  

Figure 3-10 

Be sure you understand the figure. Another suggestion for checking your 
grasp of this sometimes confusing matter of orientations is to calculate the 
importance of ordering. When both X and Z are compact, then they possess 
two intersection numbers, /(X, Z) and feZ, X), and these numbers may be 
different I For example, in Figure 3-10 /(X, Z) = -feZ, X). In a few pages 
we shall consider this assymmetry in generaI, but, as an exercise now, compute 
the difference directly from the definition, assuming X ?R Z. 

We know that /(X, Z) remains the same no matter how we deform X. In 
order to prove its invariance under perturbations of Z as well, we shall general­
ize our approach somewhat. For the present, Z, like X, will be permitted an 
existence independent of Y, and we define an intersection number for a pair 
of arbitrary mapsf: X ......... Y, g :  Z ......... Y. Of course, when Z happens to be a 
submanifold of Y and g is its inclusion map, we expect to retrieve the old 
number /(/, Z). To replace the earlier condition that Z be a c/osed submani­
fold, we now require it to be compact, but otherwise Z may be an arbitrary, 
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boundaryless manifold satisfying the dimensionaI constraint dim X + dim Z 
= dim Y. As usuaI, everything is oriented. 

. 

First, consider the transversai case. Two maps f and g are defined to be 
transversaI, f ?R  g, if 

whenever 

dlxTx(X) + dgzTiZ) = TiY) 

I(x) = y = g(z). 

The dimensionaI complementarity further implies that the sum is direct and 
that both derivatives dix and dgz are injective. Thus these derivati ves map 
Tx(X) and Tz(Z) isomorphically onto their images, so that the image spaces 
receive orientations from X and Z, respectively. Define the Iocai intersection 
numberat (x, z) to be + 1 ifthe direct sum orientation of dlxTx(X) EB dgzTz(Z) 
equais the given orientation on Ti Y), and - I  otherwise. Then l(f, g) is de­
fined as the sum ofthe Iocai contributions from ali pairs (x, z) at whichf(x) = 
g(z). (Note that when g :  Z -> Y is the inclusion map of a submanifold, then 
I ?R  g if and only if f ?R  Z, and if so l(f, g) = l(f, Z).) 

To show that the sum is finite, we use a standard reformulation once more. 
If .:1 denotes the diagonai of Y X Y, and f X g :  X X Z -> Y X Y is the 
product map, then/(x) = g(z) precisely at pairs (x, y) in (f X g)- I (.:1). Now 
dim (X X Z) = codim .:1, so if I X g ?R .:1, then the preimage of .:1 is a com­
pact zero-dimensionaI manifold, hence a finite set. Transversality, and more, 
follows from a bit of Iinear algebra. 

Lemma. Let U and W be subspaces of the vector space V. Then U EB W = V 
if and only if U X W EB .:1 = V X V. (Here .:1 is the diagonai of V X V.) 
Assume, aIso, that U and W are oriented, and give V the direct sum orienta­
tion. Now assign .:1 the orientation carried from V by the naturai isomorphism 
V -> .:1. Then the product orientation on V X V agrees with the direct sum 
orientation from U X W EB .:1 if and only if W is even dimensionaI. 

Proof Note that 

U n W = O <===> U X W n .:1 = o. 

Furthermore, 

dim U + dim W = dim V <===> dim U X W + dim .:1 = dim V X V. 

The first assertion now follows immediately. Orientations are always easiest 
to compute yourself, but in case you Iike things the hard way, read ono Let 
{UI , . . .  , ud and {Wl ' . • .  , wa be positively oriented ordered bases for U and 
W, respectively. Then the combined ordered basis {U I , . . . , Uk, Wl , . . •  , Wl} 
is positively oriented for V, so {(U I ' u l ), . . •  , (ub uk), (Wl ' Wl ), . . . , (Wl' Wl)} 
is positively oriented for .:1. In the product orientation of U x W, the ordered 
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basis {(u I , O), . . .  , (Ub O), (O, W l), . . .  , (O, Wl)} is positive, so for the direct 
sum U X W ffi �, the following combined ordered basis is positively 
oriented : 

{(UI > O), . . .  , (ub O), (O, W l), . . .  , (O, Wl), (U I > u I), . . .  , 
(ub Uk), (Wl ' W l), . . .  , (Wl' Wl)}· 

Now one may subtract one basis element from another without altering 
orientation, so the following basis has the same sign : 

{(U l ,  O), . . .  , (uk, O), (O, W I), . . .  , (O, WI), (O, U I ), . . .  , 
(O, Uk), (Wl '  O), . . .  , (Wl' O)}. 

By a sequence of l x k transpositions of basis elements, we may convert this 
basis to 

{(UI > O), . . .  , (ub O), (O, u I), . . .  , (O, uk), (O, W l), . . .  , 
(O, Wl), (W l > O), . . .  , (Wl' O)} ; 

first move (O, U I) l places to the left, then (O, u2), and so ono Similarly, lU + k) 
transpositions convert the latter to 

{(U I > O), . . .  , (uk, O), (W I , O), . . .  , (WI, O), (O, u l ), . . .  , 
(O, uk), (O, W l), . . . , (O, Wl)}. 

Finally, this ordered basis is, by definition, positively oriented for V x V. 
Each transposition of basis vectors reverses orientation. Since 

lk + l(l + k) = 2lk + f2 
transpositions intervened, the first and last ordered bases are equivalently 
oriented if and only if 2lk + f2 is even, hence if and only if l = dim W is 
even. Q.E.D. 

Substituting 

U = dfJx(X), W = dgz TzCZ), and V = Ty( Y), 

the lemma translates as 

Proposition. f ?R  g if and only if f x g ?R �, and then 

f(f, g) = (_ l )dim zf(f x g, �). 

One use of the proposition is to remove the transversality assumption on 
f and g. For arbitrary maps f: X --+ Y, g : Z --+ Y, we may simply define 
f(.f, g) to be (_ l)dim Z f(.f x g, �). 
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Proposition. If lo and go are respectively homotopic to Il and gl > then 
1(/0, go) = 1(/1 , gl )' 

Proof Taking homotopies/, and g" we obtain a homotopy I, x g, between 
lo X go and/l x gl ' Q.E.D. 

Corollary. If Z is a submanifold of Y and i :  Z ---+ Y is its inclusion map, 
then l(f, i) = l(f, Z) for any map f: X ---+ Y. 

Proof As noted earlier, the statement is completely obvious from the def­
inition when I ifi Z. But if f is arbitrary, we may deform it homotopically 
into a map transversal to Z without altering either l(f, i) or l(f, Z). Q.E.D. 

Corollary. If dim X = dim Y and Y is connected, then l(f, (y}) is the same 
for every y E Y. Thus deg (/) is well defined. 

Proof Since Y is connected, the inclusion maps io, il of any two points 
Yo, YI E Y are homotopic. Therefore 

1(/, (Yo}) = 1(/, io) = 1(/, il ) = 1(/, (yd). Q.E.D. 

Proposition. l(f, g) = (_ l )<dim X)(dim Zll(g, f). 

Proof We must compare the direct sum orientations of 

Write down bases and observe that to convert one to the other requires 
dim X· dim Z transpositions. Q.E.D. 

Corollary. If X and Z are both compact submanifolds of Y, then 

I(X, Z) = (_ l )<dim X)(dim Zll(Z, X). 

In particular, suppose that dim Y = 2 dim X, so that the self-intersection 
number l(X, X) is defined. If Xis odd dimensional, then I(X, X) = -1(X, X), 
so I(X, X) = O. Consequently, 12(X, X) = I(X, X) mod 2 vanishes as well. 
This observation yields an insight into the nonorientability of some manifolds. 
Because mod 2 intersection theory is defined without any assumption of 
orientability, we may stili calculate 12(X, X) for compact orientable sub­
manifolds X of half dimension in an arbitrary manifold Y. If one of these 
self-intersection numbers fails to vanish, then Y cannot be oriented. For 
example, the centrai circle in  the M6bius strip has nonzero mod 2 self­
intersection number, so the M6bius strip is nonorientable. 
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If Y is a compact, oriented manifold, its Eu/er characteristic xC Y) is de­
fined to be the self-intersection number of the diagonal à in Y x Y :  

X(Y) = I(à, à). 

The Euler characteristic is a diffeomorphism invariant of compact manifoldst 
that plays a fundamental role in a variety of geometric and topological situa­
tions. The next few sections will illustrate its significance and provide another, 
more primitive, definition. For the present, we content ourselves with this 
definition and one consequence of our corollary. 

Proposition. The Euler characteristic of an odd-dimensional, compact, 
oriented manifold is zero. 

EXERCISES 

(Many of the exercises for mod 2 intersection theory are true for oriented 
intersection theory. It would be valuable to look back at Chapter 2, Section 
4, with orientations in mind.) 

*1. Suppose that I: X -> Y is a diffeomorphism of compact, connected 
manifolds. Check that deg (I) = + l if 1 preserves orientation, deg (I) 
= - l  if 1 reverses orientation. 

2. (a) Compute the degree of the antipodal map Sk -> Sk, X -> -x. 
(b) Prove that the antipodal map is homotopic to the identity if and 

only if k is odd. (See Exercise 7, Chapter l ,  Section 6.) 
(c) Prove that there exists a nonvanishing vector field in Sk if and only 

if k is odd. (See Exercises 7 and 8, Chapter l ,  Section 8). 
(d) Could mod 2 theory prove parts (b) and (c) ? 

3. Let 

be a complex polynomial function. Prove that if 

rm > l a , l rm- ' + . . . .  + l am l, 

then p has a root inside the disk of radius r, {J z 1 < r}. 

4. Let/(z) = l /z on the circIe of radius r in  C. 
Ca) Compute deg (171/ 1). 

t Although we have defined Euler characteristic only for oriented manifolds, Exercise 
20 shows that it is actually defined for nonorientable manifolds as well . 
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(b) Why does our proof of the Fundamental Theorem of Algebra not 
imply that l/z = O for some z E C ?  

5. Where does the proof of the Fundamental Theorem of Algebra fail in 
R ?  (That is, why can't we use the same argument to show that every 
polynomial with real coefficients has a reai root?) 

6. Show that Z2 = e-I z l' for some complex number z. 

*7. Prove that the map SI ---+ SI , defined by z ---+ Z m, where z is the complex 
conjugate of z, has degree -m . [HINT : z ---+ Z is an orientation-reversing 
reftection diffeomorphism.] 

*8. According to Exercise 8, Chapter 2, Section 4, for any map/: SI ---+ SI 
there exists a map g :  RI ---+ RI such that 

I(cos l, sin l) = (cos g(l), sin g(l)). 

Moreover, g satisfies g(l + 210) = g(l) + 210q for some integer q. Show 
that deg (I) = q. 

*9. Prove that two maps of the circle SI into itself are homotopic if and only 
if they have the same degree. This is a special case of a remarkable 
theorem of Hopf, which we will prove later. [HINT : If go, gl : R I ---+ R I 
both satisfy g(t + l )  = g(l) + 21Oq, then so do alI the maps g, = sgl 
+ ( l  - s)go·] 

10. Suppose that X L y -L Z are given, and prove that deg (g o I) = 
deg (I) · deg (g). 

*11. Prove that a map I:  SI ---+ R2 - {O} extends to the whole ball B = 
{I z I < l } if and only if deg (I) = o. [HINT : If deg (I) = o, use Exercise 9 
to extend/to the annulus A = H < I z I < l }  so that, on the inner circle 
{I z I = t}, the extended map is constant. By the trick of Exercise I ,  
Chapter l ,  Section 6, you can make the map constant on a whole neigh­
borhood of the inner circle. Now extend to the rest of B.] 

12. Assume that X m z, both compact and oriented, and prove directIy 
from the definition that 

I(X, Z) = (_ l )<dim X)(dim Z)I(Z, X). 

13. Prove that the Euler characteristic of the product of two compact, 
oriented manifolds is the product of their Euler characteristics. 
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* 14. Suppose that W L. X L Y is a sequence of maps with f i'R Z in Y. 
Show that iff o g and Z are appropriate for intersection theory, so are 
g �ndf- I (Z). Prove that 

IU o g, Z) = I(g, f-I(Z)). 

15. Intersection numbers for transversal maps may be interpreted through 
the special case of submanifolds. For let f: X -> Y and Z c Y be ap­
propriate for intersection theory, f i'R  Z. Then f- I (Z) = {XI ' . . .  ' XN}. 
Show that dimensionai complementarity, plus transversality, makes f 
an immersion at each XI. SO f maps a neighborhood UI of XI diffeo­
morphically onto a submanifold VI c Y, with 

(Figure 3-1 1 .) Orient VI via this diffeomorphism, and check that /(j, Z) 
equals the sum of the intersection numbers of VI (ì Z, . . . , V N (ì Z. 
(However, the union VI U . . .  U VN may not be a manifold, for the 
pointsf(xl) need not be distinct.) 

Figure 3-11 

16. Let Z be a compact submanifold of Y, both oriented, with dim Z = 
t dim Y. Prove that /(Z, Z) = I(Z X Z, �), where � is the diagonal of 
Y. [HINT : Let i be the inclusion map of Z. Then 

I(Z, Z) = I(i, Z) = I(i, i) = (_ I )dim zI(i X i, �) 
= (_ l)dim ZI(Z X Z, �). 

What happens when dim Z is odd ?] 

* 17. Prove that the Euler characteristic of an orientable manifold X is the 
same for ali choices of orientation. [HINT : Use Exercise 1 6  with Z being 
the diagonal of X X X and Y = X X X. Apply Exercise 23, Section 2.] 

18. There are instances when intersection numbers can be meaningfully 
defined even in the absence of global orientations. Let X and Z be com­
pact submanifolds of Y with complementary dimensiono Suppose that 
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there exists an open neighborhood U of X Il Z in Y such that U, U Il X, 
and U Il Z are all oriented. Prove that I(X, Z) is well defined and 
unaltered by small deformations of either X or Z. [HINT : Make X m Z 
by deforming it onIy inside U.] 

19. In particuIar, suppose Z is a compact submanifoId of Y with dim Z = 

! dim Y. Here we assume onIy Y oriented. Prove that the seIf-intersection 
number feZ, Z) is stilI well defined and unaItered by small deformations 
of Z. [HINT: Define feZ, Z) = /(Z X Z, �), where � is the diagonaI of 
Y. According to Exercise 1 7, this agrees with the usuaI definition in the 
orientabIe case. Now invoke Exercise 25, Section 2, together with 
Exercise 1 8  above.] 

20. As a speciaI case of Exercise 1 9, prove that the EuIer characteristic is 
well defined even for nonorientabIe manifolds and that it is stilI a diffeo­
morphism invariant. (You need Exercise 25 of Section 2 again.) 

§4 Lefschetz Fixed - Po i nt Theory 

One can use intersection theory to study the fixed points of a 
smooth map f: X -> X on a compact oriented manifold, the solutions of the 
equation f(x) = x. Perhaps the simplest question to ask is how many fixed 
points there are. And from an intersection theoretic point of view, a natural 
answer (in some sense) suggests itseIf. Note that x is a fixed point preciseIy 
when (x,f(x» E X X X beIongs to the intersection of graph(f) with the 
diagonal �. As the Iatter are submanifoIds of compIementary dimension in 
X X X (both oriented by their diffeomorphisms with X), we may use inter­
section theory to "count" their common points : I(�, graph(f» is called the 
global Lefschetz number of f, denoted L(f). 

Of course, f may actualIy have an infinite number of fixed points, the 
identity map being an extreme example. Thus the sense in which L(f) measures 
the fixed-point set is somewhat subt1e. However, we shall see that when the 
fixed points of f do happen to be finite, then L(f) may be caIcuIated directly 
in terms of the IocaI behavior of f around its fixed points. 

Before embarking on the Iocal anaIysis, Iet us observe some immediate 
consequences of the intersection theory approach. 

Smooth Lefschetz Fixed-Point Theorem.t Let f: X -> X be a smooth map 
on a compact orientabIe manifoId. If L(f) *- 0, thenf has a fixed point. 

tThe Lefschetz number, Iike the Euler characteristic defined in the previous section, 
is a "topological" invariant-that is, it can be defined solely in terms of the ope!). sets oC 
X without any reference to manifold theory. From our approach it is only c1ear that it is 
a differential invariant. One can find a topological discussion oC both these concepts in 
Greenberg's book [12]. 
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Proof It is encouraging to find that the proof is obvious. If f has no fixed 
points, then � and graph(f) are disjoint, hence trivially transversal. Con­
sequently, 

L(f) = I(�, graph (f» = o. 

This result gains strength as we find more efficient ways to compute the 
Lefschetz number ; at the moment, for ali we know L(f) might be zero for 
every f! . 

Since L(f) is defined as an intersection number, you can easily verify 

Proposition. L(f) is a homotopy invariant. 

The graph of the identity map is just the diagonal itself; thus L(identity) 
= I(�, �) = X(X), the Euler characteristic. So 

proposition. If f is homotopic to the identity, then L(f) equals the Euler 
characteristic of X. In particular, if X admits a smooth map f: X ----> X that 
is homotopic to the identity and has no fixed points, then X(X) = O. 

The obvious first candidates for study are maps f: X ----> X for which 
graph(f) ?R �. Such maps, called Lefschetz maps, have only finitely many 
fixed points, although the converse is false. Since Lefschetz maps are defined 
by a transversality condition, no one should be surprised to discover that 
"most" maps are Lefschetz. 

Proposition. Every map f: X ----> X is homotopic to a Lefschetz map. 

Proof Recall from Chapter 2, Section 3, the basic lemma used to prove that 
transversality is generic : we can find an open ball S of some Euclidean space 
and a smooth map F:  X x S ----> X, such that F(x, O) = f(x) and s ----> F(x, s) 
defines a submersion S ----> X for each x E X. Note that the map G :  X x S 
----> X X X, defined by G(x, s) = (x, F(x, s» , is also a submersion. For sup­
pose that G(x, s) = (x, y). Since G restricted to X X {s} is a diffeomorphism 
onto X x {y}, the image of dGcx, s) contains Tx(X) x {O}. It al so contains 
{O} X T/X), as G restricted to {x} x S is a submersion into {x} X X. 
Therefore G is a submersion ; hence certainly G ?R �. By the Transversality 
Theorem, for almost every s the map X ----> X x X, defined by x ----> G(x, s) 
= (x, F(x, s» , is ?R �. That is, x ----> F(x, s) is Lefschetz. Q.E.D. 

What does i t  mean forfto be Lefschetz? Suppose that x i s  a fixed point of 
f The tangent space of graph(f) in  T x(X) X Tx(X) is the graph of the map 
dfx : Tx(X) ----> Tx(X), and the tangent space of the diagonal � is the diagonal 
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Àx of Tx(X) x Tx(X). Thus graph(f) ifi À at (x, X) if and only if 

As graph(dlx) and Àx are vector subspaces of Tx(X) x TxCX) with comple­
mentary dimension, they fill out everything precisely if their intersection is 
zero. But graph (dix) (ì Àx = O means just that dix has no nonzero fixed point 
or, in the language of linear algebra, that dix has no eigenvector of eigenvalue 
+ 1 .  

We call the fixed point x a Lelschetz.fixed point of/if dix has no nonzero 
fixed point (i.e., if the eigenvalues of dix are all unequal to + I ). So I is a 
Lefschetz map if and only if all its fixed points are Lefschetz. Notice that the 
Lefschetz condition on x is completely natural and straightforward ;  it is 
simply the infinitesimal analog of the demand that x be an isolated fixed point 
of f. (In fact, you proved i n  Exercise l O, Chapter I ,  Section 5 that Lefschetz 
fixed points are isolated.) 

If x is a Lefschetz fixed point, we denote the orientation number ± l of 
(x, x) in the intersection À (ì graph(f) by Lx(f), called the local Lelschetz 
number of I at x. Thus for Lefschetz maps, 

L(f) = � L/I)· f(x)=x 

It is quite easy to identify Lx(f) more explicitly. First, recognize that the Lef­
schetz condition at x is equivalent to the requirement that dix - I be an 
isomorphism of T x(X), for the kernel of dix - I is the fixed-point set of dix. 
(Bere I is the identity map of Tx(X).) Now you should not be shocked to dis­
cover that LxCI) simply reflects whether dix - I preserves or reverses orienta­
tion. 

Proposition. The local Lefschetz number Lx(f) at a Lefschetz fixed point is 
+ l if the isomorphism dix - I preserves orientation on Tx(X), and i t  is 
- l  if it reverses orientation. That is, the sign of Lx(f) equals the sign of the 
determinant of dix - l. 
Proof. Let A = dix and let p = {VI > . . .  , vk} be a positively oriented ordered 
basis for Tx(X). Then 

are positively oriented ordered bases for Tex,x/À) and Tex,x)(graph (f» , 
re3pectively. So the sign of Lx(f) equals the sign of the combined basis 
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in the product orientation of X x X. Since we may subtract a linear combina­
tion of basis vectors from another without altering orientation, the combined 
basis has the same sign as 

Because A - I is an isomorphism, we can subtract suitable linear combina­
tions of the last k-vectors from the first to obtain an equivalently oriented 
basis 

{(VI > O), . . . , (vk, O), (O, (A - I)vl), • • •  , (O, (A - I)vk)} 
= {P x O, O x (A - I)P}. 

By definition of the product orientation, the sign of the latter is equal to 
sign p. sign (A - I)p. Q.E.D. 

In order to develop a feeling for Lx(f), let us examine the two-dimensional 
case. Since we are investigating a local property, assume that I: RZ -> RZ, 
and I fixes the origino Set A = dio, so that 

I(x) = Ax + f(X), 

where f(X) -> O rapidly as x -> o. Assume that A has two independent real 
eigenvectors ; thus by the proper choice of coordinates, its matrix is diagonal, 

Then 

Assume that both (XI and (Xz are positive. 

Case 1. Both (X I ,(XZ > l .  Lo(f) = + 1 ,  and 10caIly l is an "expanding 
map" with source at the origin (Figure 3-12). 

\ /  
• 

1 \  
Source 

Figure 3-12 
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Case 2. Both (X1 >(Xz < l .  Again Lo(f) = + l ,  and 10caIly f is a "contract­
ing map" with sink at the origin (Figure 3-1 3). 

\ /  
. ----

/ \  
Sink 

Figure 3-13 

Case 3. (XI < 1 < (Xz. Here Lo(f) = - I , and the origin is a sadd/epoint 
of f (Figure 3-14). 

� l L  
. --

Saddle 

Figure 3-14 

Observe how LxU) reports on the qualitative topological behavior of f 
near the fixed point x. In  these two-dimensional examples, one can re ad off 
LAf) directly from pictorial representations off. For example, letf: SZ -> SZ 
be a smooth map of the unit sphere that moves every point except the poles 
due south. (Figure 3- 1 5) lf n :  R 3 - {O} -> SZ is the projection x -> x/I x I, 
then 

f(x) = n(x + (0, 0, -t» 

N 

s 
Figure 3-15 
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is an appropriate example. This! is a Lefschetz map with a source at the north 
pole and a sink at the south pole. Thus LN(f) = + I = Ls(f), so 

L(f) = LN(f) + Li!) = 2. 

As! is homotopic to the identity via 

f,(x) = {x + (0, 0, - �)} 
we have L(f) = X(S2). 

Proposition. The Euler characteristic of S2 is 2 .  

The theorem relating Euler characteristics to fixed-point theory is  a 
double-edged sword. We have just used it to caIculate X(S2), but now we may 
reverse direction to conclude 

Corollary. Every map of S2 that is homotopic to the identity must possess 
a fixed point. In particular, the antipodaI map x --> -x is not homotopic to 
the identity. 

If you wilI grant a bit of poetic Iicense, we can extend the argument to 
calculate the Euler characteristic of alI compact oriented two-dimensionaI 
manifolds. First we must quote a theorem not to be proven here. (A classical 
proof may be found in Ahlfors and Sario [7], and a modern Morse theoretic 
proof in Gramain [6] or WalIace [5].) 

Classification of Two-Manifolds. Every compact oriented boundaryless 
two-manifold is diffeomorphic to one of the folIowing : 

Surface of genus 1 (torus) : C � ) 
Surface of genus 2 :  � 
Surface of genus 3 :  � 
etc. 
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Source 

Saddles 

Sink 

Figure 3-16 

Now we "construct" a Lefschetz map on the surface of genus k as follows. 
Stand the surface vertically on one end, and coat it evenly with hot fudge 
topping. LetJ,(x) denote the oozing trajectory of the point x of fudge as time 
t passes. At time 0'/0 is just the identity. At time t > 0,/, is a Lefschetz map 
with one source a� the top, one sink at the bottom, add saddlepoints at the 
top and bottom of each hole. Figure 3-1 6  shows the map for the surface of 
genus 4. 

Proposition. The surface of genus k admits a Lefschetz map homotopic 
to the identity, with one source, one sink, and 2k saddles. ConsequentIy, its 
Euler characteristic is 2 - 2k. 

Note that if k > 1 ,  the Euler characteristic of the surface of genus k is 
negative-rather surprising for a self-intersection number ! 
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Despite the fact that "most" maps are Lefschetz, many common ones are 
not. For example, the polynomial maps z ----> z + zm on C are not Lefschetz for 
m > l .  But we shall see that complicated fixed points are just amalgams of 
Lefschetz points. They behave like unstable compound parti cles in physics ; 
disrupted by the sIightest perturbation, they decompose into elementary con­
stituents. That is the essence of proof of the first proposition in this section: 
under an arbitrarily small perturbation, the fixed points of any map f: X ----> 
X spIi t into Lefschetz fixed points. Iffhas isolated fixed points, we need only 
disrupt it locally. 

Splitting Proposition. Let U be a neighborhood of the fixed point x that 
contains no other fixed points of f Then there exists a homotopy f, of f such 
thatfl has only Lefschetz fixed points in U, and eachf, equalsfoutside some 
compact subset of U. 

Proof First suppose that U is an open set in Rk and thatf: U ----> Rk fixes 0, 
but no other points, in U. Let p :  Rk ----> [O, l ]  be a smooth function that is one 
on a neighborhood V of the origin and zero outside a compact subset K c U. 
We shall show that there are points a E Rk, with I a I arbitrarily small, such 
that 

j,(x) = f(x) + tp(x)a 

is satisfactory. Note that if I a I is small enough, then f, has no fixed points 
outside of V. For sincef has no fixed points in the compact K - V, 

I f(x) - x I > e> ° 

there. So if I a I < e/2, we have 

I fb) - x l > I f(x) - x l - tp(x) l a l > � 
on K - V. Of course, outside K, 

j,(x) = f(x) *- x. 

Now lise Sard to select any point a, as close as desired to 0, such that a 
is a regular value for the map x ----> f(x) - x, and I a I < e/2. If x is a fixed 
point of fl ' then x E V, so fl = f + a near x. Consequently, d(fl)x = dfx ; 
hence x is a Lefschetz fixed point for fl if and only if dfx - I is nonsingular. 
But since fl (x) = x, 

f(x) - x = a.  
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So the regularity of a implies that 

d(f - I)x = dix - I 

is nonsingular. 
This proves the propoSltIon in Rk. Transferring to manifolds is easy. 

Choose a Iocai parametrization t/J around x E X carrying O to x, and apply 
the Euclidean case to g = t/J- l o l o t/J. You need only check that if z is a 
Lefschetz fixed point for g" then t/J(z) is a Lefschetz fixed point for /, = 

t/J o g, o t/J- l . But the chain rule shows that d(f,)(>(z) has a nonzero fixed point 
if and only if d(g,)z does. Q.E.D. 

The compound fixed points may decay into elementary ones in different 
ways. Depending on the precise perturbation, the pattern and even the num­
ber of Lefschetz "particles" produced may vary. But one factor we know is 
constant : the sum of the Iocai Lefschetz numbers of the resulting fixed points. 
These numbers, therefore, play the role of electric charges on the particles, 
and the homotopy invariance of the globai Lefschetz number is the analog 
of the conservation of charge Iaw. In order to account for the fact that dif­
ferent numbers of elementary particles may be produced, think of Lefschetz 
fixed points with opposite signs as oppositely charged antimatter equiva­
lents ; they can annihilate each other or, conversely, they can be created in 
pairs. 

Certainly we should be able to determine empirically the charge on a com­
pound particle without smashing it into bits to count the resulting ± l 
charges. One experiment, using our intersection theoretic equipment, sug­
gests itself in Euclidean space. For the fixed points of a map I on Euclidean 
space are the same as the zeros of the map x -> I(x) - x, and we have had 
experience in measuring these phenomena. 

Suppose that x is an isolated fixed point of I in Rk. If B is a small closed 
ball centered at x that contains no other fixed point, then the assignment 

I(z) - z z � -;-'1 l''''('""""'z )<--
-

z'l 

defines a smooth map F :  aB -> Sk- l . We call the degree of this map the 
local Lelschetz number of I at x, denoted Lx(f). Note that the choice of B is 
insignificant, for if B' is another ball with, say, smaller radius, then F is de­
fined on the whole annulus B - B'. The Iast term is a compact manifold with 
boundary, and the boundary equals aB, with the usuai orientation, union 
aB', with the opposi te orientation. Since the degree of F is zero on the bound­
ary of B - B', its degree on B must equai its degree on B'. 

Our terminology requires justification. 
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Proposition. At Lefschetz fixed points, the two definitions of LAf) agree. 

Proof For simplicity, assume that x = O. Since f(O) = O, we may write 
fez) = Az + feZ), where A = dfo and f(z)jl z 1 -> O as z -> O. Since the linear 
map A - I is an isomorphism, the image of the unit ball under A - I con­
tains some cIosed ball of radius c > O. Linearity implies 1 (A - I)z 1 > c l z 1 
for all z E Rk. Now choose the radius of the ball B small enough so that 

Define 

I f(Z) 1  < s.-. B I z l 
2 on . 

f,(z) = Az + u(z). 

Since I f,(z) - z l  > I (A - I)z l - t i f(z) 1 > �c l z l  

for O < t < l ,  the map 

( f,(z) - z Ft z) = 1 f,(z) - z 1 

defines a homotopy aB x 1 -> Sk- l . 
Now deg (Fl) is precisely the new definition of Lo(f). Since deg (Fl) = 

deg (Fo), we have reduced to showing that the degree of 

. (A - I)z Fo . z -';-
1 (A - I)z 1 

is ± I ,  depending on whether A - I preserves or reverses orientation. Here 
we invoke an algebraic lemma, one that you wil l  prove in the exercises 
(Exercise l ). 

Lemma. Suppose that E is a linear isomorphism of Rk that preserves orien­
tation. Then there exists a homotopy Et consisting of linear isomorphisms, 
such that Eo = E and El is the identity. If E reverses orientation, then there 
exists such a homotopy with El equal to the reflection map 

Apply this to E = A - I, obtaining a homotopy of Fo to z -> Elzjl Elz l. 
Both possibilities for El preserve norm, so 1 Elz 1 = 1 z 1 = r, the radius of B. 
Thus if A - I preserves orientation, Fo is homotopic to the standard orienta­
tion-preserving diffeomorphism z -> zjr of aB -> Sk- l , so deg (Fo) = l . If 
A - I reverses orientation, then Fo is homotopic to this same diffeomor­
phism followed by the orientation-reversing reflection map on Sk- l , so 
deg (Fo) = - 1 . Q.E.D. 
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Not onIy does our new definition agree with the oid for Lefschetz fixed 
points, it is al so easily seen to be the correct "charge" invariant. 

Proposition. Suppose that the map I in Rk has an isolated fixed point at x, 

and let B be a c10sed ball around x containing no other fixed point of f 
Choose any map Il that equais l outside some compact subset of lnt (B) but 
has onIy Lefschetz fixed points in B. Then 

Z E B. 

Proof LxU) is the degree on aB of 

But on aB, F equais 

F . '  I(z) - z 
• Z 

-'--+ I /(z) - z I 

F . It(z) - z l ' Z � 
1 /1(z) - z l

' 

Now suppose that z l '  • • .  , ZN are the fixed points of/l , and choose small balls 
BI around Zj that are disjoint from each other and from aB. Then FI extends 
to 

N 
B' = B - U Int (Bj), 

i� 1  

so its degree as a map aB' -> Sk- I i s  zero. But since 

N aB' = aB - U aBj, I� I 

this degree equais its degree on aB, minus its degrees on aBI. Finally, the de­
gree of FI on aBI is L.,UI) ' Q.E.D. 

Now Iet us extend this Euclidean definition of Iocai Lefschetz numbers to 
manifoIds in the most pedestrian way. If/: X -> X has an isoiated fixed point 
at x, choose any Iocai diffeomorphism ifJ around x, and Iet g = ifJ- I o I o ifJ on 
Euclidean space. Suppose that ifJ(O) = x, and define LA/) = Lo(g). Does this 
definition depend on the choice of ifJ ?  First we check Lefschetz fixed points. 
If x is Lefschetz, then LxU) is positive or negative, depending on whether 
dix - I preserves or reverses orientation. But 

So dgo - I is an isomorphism if dix - I is, and it has the same effect on orien-
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tation as dix - I. Thus O is  also a Lefschetz fixed point for g, and Lo(g) = 
Lx(f)· / 

If x is an arbitrary fixed point, we can avoid directly checking the in­
significan�e of coordinate choice by splitting x into Lefschetz fixed points. 
Given two parametrizations if> and if>' around x, choose a map l, : X -+ X 
that equals I outside some small set U contained in the images of both para­
metrizations and having only Lefschetz fixed points in U. Then, by the last 
proposition, the local Lefschetz number of if>- ' o I o if> at O equals the sum of 
the local Lefschetz numbers of if>- '  o l, o if> in if>- ' (U). However, we have just 
shown that the number computed for if>- '  o l, o if> at each Lefschetz fixed 
point equals the corresponding number for f Thus 

Z E U. 

As we obtain the same formula using if>', Lx(f) is well defined. 
Moreover, we have proved the 

Local Computation of the Lefschetz Number. Let I: X -+ X be any smooth 
map on a compact manifold, with only finitely many fixed points. Then the 
global Lefschetz number (which is a homotopy invariant) equals the sum of 
the local Lefschetz numbers : 

L(f) = L Lx(f). f(x)=x 

Proof Just perturb Ilocally around each fixed point to obtain a homotopic 
Lefschetz mapping/, : X -+ X. We know the theorem for I, ; we know that 
L(f) = LU,) ;  and, finally, we just showed that the sum ofthe local Lefschetz 
numbers of/equals the analogous sum fori, . Q.E.D. 

EXERCISES 

1. Here is a guide to proving the lemma of page 1 28. 
(a) Show that you need only deal with the orientation-preserving case. 

[HINT : If E reverses orientation, compose it with the reflection.] 
(b) Since E has a real or complex eigenvalue, it maps some one- or 

two-dimensional subspace V c Rk onto itself. Write Rk = V ED W. 

Find a homotopy consisting of linear isomorphisms Et such that 
Eo : V -+ V and Eo : W -+ W. HINT : In an appropriate basis, 

E = (--�--i--�-} 
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Set 

Et = (-�- :-��-) 
(c) For k = l ,  construct the homotopy explicitly. 
(d) Assume that k = 2 and that E has only compie x eigenvalues. Show 

that Et = tI + ( l  - t)E is always an isomorphism. 
(e) Now induct on k. 

2. Let A : V ----> V be a linear map. Show that the following statements are 
equivalent : 
(a) O is an isolated fixed point of A .  
(b) A - I :  V ----> V i s  a n  isomorphism. 
(c) O is a Lefschetz fixed point of A.  
(d) A is a Lefschetz map. 

3. Prove that the following are equivalent conditions : 
(a) x is a Lefschetz fixed point of I: X ----> X. 
(b) O is a Lefschetz fixed point of dix : Tx(X) ----> Tx(X). 
(c) dix : Tx(X) ----> Tx(X) is a Lefschetz map. 

4. Prove that the c1ass of Lefschetz maps of a compact manifold X into 
itself are stable. [HINT : m is a stable condition.] 

5. In the exercises of Section 2 you found some examples of submanifolds 
that cannot be global1y defined by functions. However, these examples 
also involved orientation difficulties. Show that nonorientability is not 
the key phenomenon here, by proving that the diagonal il in S2 X S2 
is not globally definable by two independent functions. In contrast, 
show that the other standard copies of S2 in S2 X S2-i.e., S2 X {a}, 
a E S2-are so definable. [HINT : Compare with Exercise 1 8, Chapter 2, 
Section 4.] 

6. Show that the map/(x) = 2x on Rk, with a "source" at O, hasLo(f) = l .  
However, check that the "sink" I(x) = !X has Lo(f) = (- I )k. 

7. Prove that 
k even 
k odd 

[HINT : Use the map constructed for S2, plus Exercise 6.] 

8. Use the existence of Lefschetz maps for another proof that X(X X Y) 
= X(X) ·X( Y). 
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9. Show that summing local Lefschetz numbers (of maps having only 
finitely many fixed points) does not define a homotopy invariant with­
out the compactness assumption. [HINT :  Rk, for example, is contract­
ible.] 

lO. (a) Prove that map z -> z + zm has a fixed point with local Lefschetz 
number m at the origin of C (m > O). 

(b) Show that for any c =I=- 0, the homotopic map z -> z + zm + C is 
Lefschetz, with m fixed points that are ali close to zero if c i s  small. 

(c) Show that the map z -> z + zm has a fixed point with local Lefschetz 
number -m at the origin of C (m > O). 

11. Show that the Euler characteristic of the orthogonal group (or any com­
pact Lie group for that matter) is zero. [HINT: Consider left muItiplica­
tion by an element A =I=- l on O(n).] 

§5 Vector Fields a n d  

the Poincaré- H opf Theorem 

A vector field on a manifold X in RN i s  a smooth assignment of 
a vector tangent to X at each point x-that is, a smooth map v : X -> RN such 
that v(x) E Tx(X) for every x. From a local point ofview, ali the interesting 
behavior of v occurs around its zeros, the points x E X where v(x) = O. 
For if v(x) =I=- 0, then v is nearly constant in  magnitude and direction near x 
(Figure 3- 1 7). However, when v (x) = 0, the direction of v may change radical­
Iy in any small neighborhood of x. The field may circuIate around x; it may 
have a source, sink, or saddle ; it may spiraI in toward x or away ; or it may 
form a more compIicated pattern (Figure 3-1 8). 

-% :::--"'" 
v(x) :f O 

Figure 3-17 

Try drawing a number of vector fields on several compact surfaces ; first 
determine patterns around the zeros and then interpolate the remainder of 
the field smoothly. You will quickly discover that the topology of the mani­
fold limits your possibiIities. For example, on the sphere it is easy to create 
fields with exactIy two zeros, as long as each zero is  a sink, source, spiraI, or 
circulation. A field with just one zero of type (f) is also readily found. None 
of these patterns exists on the torus. Similarly, patterns admissible on the 
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torus, like one saddle plus one source, are prohibited on the sphere. In par­
ticular, the torus has a vector field with no zeros. a situation that common 
experience shows is impossible on the sphere. (lf your head were a doughnut, 
you could comb your bair witbout leaving a bald spot.) 

In order to investigate the relation between � and the topology of X, we 
must quantify the directional change of � around its zeros. First, assume that 
we are in Rk and that � has an isolated zero at the origino The direction of � 
at a point x is just the unit vector �(x)/I �(x) I. Thus the directional variation 
of � around O is measured by the map x -> �(x)/I �(x) I carrying any small 
sphere S. around O into Sk- I . Choosing tbe radius E so small that � has no 
zeros inside S. except at the origin, we define the index of � at O, indo (�), to 
be the degree of this directional map S. -> Sk- I . As usual, the radius itself 
does not matter, for if E' is also suitable, then �/I � I extends to the annulus 
bounded by the two spheres. 

In the two-dimensional case, indo (�) simply counts the number of times � 
rotates completely while we walk counterclockwise around the circle ; how­
ever, rotation of � in the counterclockwise direction adds + I ,  whereas clock­
wise rotation contributes - l .  Calculate the indices of the five vector fields 
in Figure 3-1 8  and compare with our answers. (a : + l ,  b :  + l ,  c :  + I ,  d :  - l ,  
e :  + 1 , 1: +2). 

. 

In defining the index of vector fields at isolated zeros on arbitrary oriented 
manifolds, we use local parametrizations. Looking at the manifold locally, 
we see essentially a piece of Euclidean space, so we simply read off the index 
as if the vector field were Euclidean. The difficulty, of course, is the necessity 
ofproving that the same index is obtained no matter which local parametriza­
tion we use for viewing. 
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Explicitly, suppose that if> : U -- X is a local parametrization carrying the 
origin of Rk to x. There is a natural way to pull back the vector field � from X 
to make a vector field on the open subset U c Rk. For each u E U, the de­
rivative d�u is an isomorphism of Rk with the tangent space of X at if>(u). We 
simply define the pullback vector field, denoted if>*� , by assigning to u the 
vector that corresponds to the value of � at if>(u) : 

if>*�(u) = dif>;; l �(if>(u» . 

Now if � has an isolated zero at x, if>*� has an isolated zero at the origin, 
and we define indx (�) = indo (if>*�). We shall avoid the tedium of proving 
that this definition does not depend on the choice of local parametrization 
with a trick, but later. 

The nature of the topological limitation on � is explained by the following 
celebrated theorem. 

Poincaré-Hopf Index Theorem. If � is a smooth vector field on the compact, 
oriented manifold X with only finitely many zeros, then the global sum of the 
indices of � equals the Euler characteristic of X. 

Knowing the Lefschetz theorem, we should have anticipated the appear­
ance of the Euler characteristic, for vector fields are more than static collec­
tions of arrows on X -they are prescriptions for motion. Looking at a picture 
of a vector field, we tend to perceive a smooth fluid flow along the lines of the 
field. Each particle on the surface seems to travel a path that is always tangent 
to the field. The mathematical existence of this flow must be demonstrated 
by solving differential equations, technicalities that need not concern uso But, 
intuitively, think of allowing every particle on a compact manifold X to flow 
along the vector field � for some time t. We thus obtain a transformation h, of 
X whose fixed points, if t is small enough, are exactly the zeros of � . The be­
havior of the flow around these points, and hence the pattern of � near its 
zeros, is governed by the Lefschetz number of h,. But as the elapsed time is 
shrunk to zero, the flow transformations h, homotopically reduce to the 
identity transformation. Hence the Lefschetz number of the flow is nothing 
but the Euler characteristic of X. 

We shall follow this approach in proving the Poincaré-Hopf theorem, 
except that we can avoid the differential equations by contenting ourselves 
with a crude approximation to the flow. It turns out that the only crucial 
property of the flow is that it is "tangent to the field at time zero," a rather 
weak condition. Suppose that {f,} is any homotopic family of transformations 
of X withfo = identity. We shall say that {f,} is tangent to the vector field � 
at time zero if, for each fixed x E X, the vector �(x) is tangent to the curve 
!,(x) at time zero. We perform the basic local calculation in Euclidean space, 
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so assume that � and the mapsf, are defined in a neighborhood U ofthe origin 
of Rk. 

Proposition. Suppose, for t =F- O, that the mapsf, have no fixed point in the 
set U except the origin and that the vector field � vanishes only at O. If fJ,} is 
tangent to � at time zero, then the local Lefschetz number of eachj, at O equals 
the index of � : 

This calculation needs nothing more than a simple application of the fun­
damental theorem of calculus. 

Lemma. If g(t) is a smooth function of l, then there exists another smooth 
function r(t) such that 

g(t) = g(0) + tg'(O) + t2r(t). 

Prool First we show that g(t) = geO) + tq(t). Fix t and define h(s) = g(ts). 
Then h'(s) = tg'(ts), so 

Since 

we need only set 

Note that 

h(l )  - h(O) = s: h'(s) ds = t s: g'(ts) ds. 

h(l )  = g(t) and h(O) = geO), 

q(t) = s: g'(ts) ds. 

q(O) = s: g'(O) ds = g'(O). 

Now we apply the same argument to the function q, obtaining q(t) = q(O) + 
tr(t), so 

g(/) = geO) + tg'(O) + t2r(t). Q.E.D. 

Note that if g depends smoothly on some other variables as well, then the 
function r, being defined by an integrai formula, wiU also vary smoothly in 
the extra variables. 

Proof of Proposition. For notational convenience, at any time t let f;(x) de­
note the vector whose coordinates are the derivatives at ti me t of the corre­
sponding coordinates of j,(x) ; thus the tangency of (j,} to � means f�(x) = 
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�(x). Fix x and apply the lemma to each coordinate of the functionj,(x). We 
thus obtain a smooth vector-valued function r(t, x) such that 

j,(x) = fo(x) + tf�(x) + t2r(t, x), 

or 

f,(x) = x + t�(x) + t2r(t, x). 

Rearranging, 

f,(x) - x = t�(x) + t2r(t, x). 

By assumption, 

/,(x) - x =1= O if t =1= O, 

so we may divide each si de of the equation by its norm : 

j,(x) - x �(x) + tr(t, x) 
I f,(x) - x l  

= 
I �(x) - tr(t, x) l

· 

Now we let x vary on the sphere Se" The degree of the map on the left is, by 
definition, Lo(f,). On the right, we have a homotopic family of maps S. ----> 
Sk- l ,  defined even at t = O. In fact, at t = O the right side becomes the map 
� /1 � I, whose degree is indo (�). Since degree is a homotopy invariant, 

Lo(f,) = indo (�). Q.E.D. 

An immediate consequence of the proposition is the invariance of index 
u nder diffeomorphisms. First note that every vector field � on Rk has many 
suitable families {i,} tangent to it at time zero. The local flow is one example, 
but so is its first-order approximation f,(x) = x + t�(x). Now suppose that 
� has an isolated zero at the origin, and let if> be a diffeomorphism of neigh­
borhoods of O with if>(0) = O. Then the chain rule implies that if {/,} is tangent 
to � at time zero, {if>- l o f, o if>} is tangent to if>*� . But if> is just a reparametri­
zation of a neighborhood of the origin, and we know that local Lefschetz 
numbers do not depend on parametrization ; thus 

as claimed. 
This observation also proves that the index is well defined on arbitrary 

manifolds. For if if>l and if>2 are two local parameU"izations of a neighborhood 
of the isolated fixed point x E X, check that 

if>l *� = (if>2 1 o if> 1)*[if>2*�] .  

Consequently, 
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Prool 01 Poincaré-Hopf The remainder of the proof of the Poincaré-Hopf 
theorem is a construction. Given a vector field V defined on the compact 
manifold X, we shall produce a globally defined family of maps I, that is 
tangent to v at time zero and that possesses two important properties : the 
fixed points of each/, for t > O are precisely the zeros of v, and/o is the iden­
tity map of X. From the proposition, it then follows that the sum of the in­
dices of v equals the sum of the local Lefschetz numbers of I,-that is, the 
global Lefschetz number. But since lo is the identity, L(f,) = L(fo) is the 
Euler characteristic of X. 

Recall the f-Neighborhood Theorem. Let X· denote the set of points in 
RN at distance less than f from X. Then if the positive number f is small 
enough, there is a normal projection map 1C :  X· ----> X that restricts to the 
identity map of X. Now since X is compact, all the points x + tv(x) lie 
inside X', as long as the parameter t is small enough and x E X. Thus we may 
define 

/,(x) = 1C[X + tv(x)] . 

If x is fixed, the tangent to the curve/'(x) at time zero is d1Cx v(x). But since 1C 
is the identity on X, d1Cx is the identity on Tx(X). Thus d1Cx v(x) = v(x), and 
{/,} is tangent to v at t = O. 

Obviously, the zeros of v are fixed points of I" and, final1y, we need only 
show that there are no other fixed points. Remember that, by construction, 
1C is a normal projection map ; if 1C(Z) = x, then Z - x must be a vector 
perpendicular to X. But then if x is a fixed point of I,(x) , 1C(X + tv(x)) = x 
so tv(x) --L TxCX). Since v(x) E Tx(X), it can be perpendicular only if it is 
zero. Q.E.D. 

From the vantage point of intersection theory, we can get a more sophis­
ticated, and thus simpler, view of Poincaré-Hopf. We have remarked (Exer­
cise 6, Chapter l ,  Section 8) that a vector field v on X is a cross section of the 
tangent bundle T(X), so graph(v) is a copy of X in T(X). The "identical1y 
zero" vector field gives the natural embedding Xo of X in T(X). Thus zeros of 
v correspond exactly to points of Xo (ì graph (v). No inspiration is now need­
ed to decide how to measure global1y the zeros of v ; the answer has to be 
I(Xo, graph(v» .  See Figure 3- 1 9. If Xo in Figure 3- 1 9  is twisted up to the 45° 
line, you may recognize it as the infinitesimal version of Figure 3-20, where 
{/,} is tangent to v at time zero. In order to get a Lefschetz-free proof of the 
Poincaré-Hopf theorem, we must : ( 1 )  exploit the similarity of the pictures to 
show that I(Xo, graph (v» equals 1(11, graph (f,»), which, by homotopy in­
variance, i s  1(11, t1) = x(X) ; and (2) localize I(Xo, graph (v»-that is, once 
the zeros of v are isolated, recognize indx(v) as the contribution of each 
zero x. 

This scheme is carried out i n  Exercises 6 through 9. 
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T(X) 

l 
• x x 

Figure 3-19 

graph (t, )  

x x x  

Figure 3-20 

EXERCISES 

1.  Let v be the vector field on R2 defined by v(x, y) = (x, y). Show that the 
family of diffeomorphisms h, : R2 -----> R2, defined by h,(z) = tz, is the 
ftow corresponding to v . That is, if we fix any z, then the curve t -----> h,(z) 
is always tangent to v ; its tangent vector at any time t equals v(h,(z» .  
Draw a picture of v and its ftow curves. Compare indo (v) with Lo(h,). 

2. Now let v(x, y) = (-y, x). Show that the ftow transformations are the 
linear rotation maps h, : R2 -----> R2 with matrix 

(c�S t -sin t ) . 
SIn t cos t 

Draw v and its ftow curves. Aiso compare indo (v) with Lo(h,). 
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*3. Recall that a vector field 
� 

00 a manifold X in RN is a particular type of 
map 

�
: X --> RN. Show that at a zero x, the derivative d

�
x :  TAX) --> RN 

actually carries Tx(X) into itself. [HINT : If X = Rk X {O}, then the claim 
is obvious. But you can always reduce to this case by suitable local 
parametrizations around x in RN.] 

4. Let /, :  X --> X be the map constructed in the proof of Poincaré-Hopf, 

f,(x) = n(x + t
�

(x)). 

Prove that at a zero x of
�

, d(f,)x = I - t d
� 

x as linear maps of Tx(X) 
into itself. (I is the identity.) [HINT : n restricted to X is the identity, so 
what about (dn)x on T)X) ?] 

*5. A zero x of 
� 

is nondegenerate if d
� 

x :  TAX) --> Tx(X) is bijective. Prove 
that nondegenerate zeros are isolated. Furthermore, show that at a 
nondegenerate zero x, ind x (

�
) = + 1 if the isomorphism d

� 
x preserves 

orientation, and indx (
�

) = - 1  if d
� 

x reverses orientation. [HINT : 
Deduce from Exercise 4 that x is a nondegenerate zero of 

� 
if and only 

if it is a Lefschetz fixed point of I,.] 

6. A vector field 
� 

on X naturally defines a cross-sectional map Iv : X --> 
T(X), by Iv(x) = (x, 

�
(x)). 

(a) Show that fv is an embedding, so its image Xv is a submanifold of 
T( X) diffeomorphic to X. 

(b) What is the tangent space of Xv at a point (x, 
�

(x)) ? 
(c) Note that the zeros of 

� 
correspond to the intersection points of 

Xv with Xo = {(x, O)}. Check that x is a nondegenerate zero of 
� 

if 
and only if Xv m Xo at (x, O). 

(d) If x is a nondegenerate zero of
�

, show that indx (
�

) is the orienta­
tion number of the point (x, O) in Xo (ì Xv. 

7. Zeros of vector fields may be "split" by perturbations just like fixed 
points of maps. Suppose that x is a zero of 

� 
and U is a neighborhood of 

x in X containing no other zero .of 
�

. Prove that there exists a vector 
field 

� 
I that agrees with 

� 
outside some compact subset of U and that 

has only nondegenerate fixed points inside U. [HINT: Reduce to the case 
where U is an open subset of Rk. Pick a function p that is I near x and 
O outside a compact subset of U, and define 

� 
I(Z) = �(z) + p(z)�, 

Show that if � is small enough, 
� 

I can be zero only where p = l .  Now 
demand that -� be a regular value of 

�
.] 
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8. You proved in Exercise 1 8, Chapter 2, Section 3 that there is a diffeo­
morphism of a neighborhood of Xo in T(X) with a neighborhood of the 
diagonai a in X x X, extending the natural diffeomorphism Xo -> a 
defined by (x, O) -> (x, x). Deduce from this that I(Xo, Xo) = I(a, a). 

9. Show that if � is any vector fieid on X, then X. may be smoothIy de­
formed into Xo' Use this result, together with the preceding three prob­
lems, to produce an alternate proof of the Poincaré-Hopf theorem. 

lO. Let V be a vector subspace of RN, and let v E V. Define a linear func­
tionaI lf/v on V by If/v{W) = v · w. Prove that the mapping v -> If/v defines 
an isomorphism of V with its duai space V*. 

11. Let fbe a real-valued function on the manifoid X in RN. For each x E 

X, dfx : Tx(X) -> R defines a linear functionai on Tx(X). According to 
Exercise lO, we may write dfx(w) = �(x) , w  for some vector �(x) E 
TxCX). This vector field � is called the gradientfield of f, � = g

rad 
(f). 

For the special case X = Rk, show that the gradient has the folIowing 
simple representation in standard coordinates : 

-----' ( af af ) grad (f) = ax)
" ' " aXk 

. 

12. Let 1/1 : U -> X be a Iocal parametrization of the k-manifoid X in RN, 
and we shall compute the vector field 1/1* grad (f) on U, whenfis a func­
tion on X. Let te ) ,  . . .  , ek} be the standard basis for Rk, and define 
smooth functions gli on U by the formula 

Now prove that 

as a vector field on U. 

13. Conclude from the preceding exercise that if f is a smooth function on 
X, then grad (f) is a smooth vector field. 

14. (a) Prove that the zeros of the vector fieid grad (f) are just the criticai 
points of f [HINT: The functions gli in Exercise 1 2  never vanish 
on U.] 

(b) Prove that x is a nondegenerate zero of grad (f) if and onIy if it is a 
nondegenerate criticaI point of f [HINT: Use Exercise 1 2  to show 
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that if if>(u) is a zero of �d (f), then the derivative at u of if>* g
rad 

(f) 
has as matrix the product of the Hessian of/ o if> at u with the matrix 
(gi}(u». Show that (gi}(u» is positive definite to conclude that 
det (glj(u» > O.] 

15. As an exercise in overkill, use Exercise 14 to show that on every mani­
fold X there exists a vector field with only isolated zeros. (For a more 
direct proof, see Exercise I I , Chapter 3, Section 6.) 

16. If x is a non degenerate criticai point of a functionl on X, define indx (f) 
to be the sign of the determinant of the Hessian of I at x, as computed 
in any coordinate system. Show that this is well defined (Le., it is the 
same in ali coordinate systems). [HINT : You need not compute anything 
if you use Exercise 1 4.] 

17. Let X be a compact manifold and /a Morse function on X. Prove that 
the sum of the indices of I at its fixed points equals the Euler charac­
teristic of X. 

18. Suppose that � is a vector field with isolated zeros in Rk, and W is a com­
pact k-dimensional submanifold of Rk with boundary. Assume that � is 
never zero in a W. Prove that the sum of the indices of � at its zeros in­
side W equals the degree of the map 

[HINT : Delete balls around the zeros and use our standard argument.] 

19. (a) Vector fields on Rk may be simply identified with maps of Rk into 
itself. In particular, the map z ---> zm on C = R2 defines a vector 
field on R2 with a zero at the origino Check that this zero has 
index m. 

(b) Check that the index of the vector field z ---> zm on C = R2, at the 
origin, is -m. [HINT: z ---> z is an orientation-reversing reflection 
of R2.] 

§6 The H opf Deg ree Theorem 

Intersection theory has shown us how to make sense of the 
primitive notion that a map I :  X ---> Y be n-to-I ,  that it map n points of X 
to each point of Y. Although very few maps behave simply enough to be de­
scribed by an integer n in such a nalve sense, we need only learn how to count 
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correctIy in order to salvage the concept for generaI smooth maps. For if we 
keep tally by using orientations, then at least almost every point of Y is "hit 
n times." (Here we limit ourselves to connected, compact, oriented manifolds 
of the same dimension.) 

Now the integer n-the degree of/-has the admirable property of homo­
topy invariance : it is the same for all homotopic deformations of i In this sec­
tion you will prove the remarkable fact that when Y is a sphere, this simple 
integer completely determines the homotopy relationship. That is, two maps 
10'/1 : X -----> Sk are homotopic if and only if they have the sa me degree. The 
theorem is due to Hopf, and it will be proved through a series of exercises. 
Since these exercises are somewhat more ambitious than the earlier ones on 
Jordan-Brouwer, detailed hints are supplied at the end. (Of course, we hope 
you will enjoy constructing the proof without submitting to the temptation 
of reading the hints.) The techniques are very similar to the last few sections, 
so this series should serve as a good review. 

For the proof, we will need a new topological term. An isotopy is a homo­
topy in which each map h, is a diffeomorphism, and two diffeomorphisms are 
isotopic if they can be joined by an isotopy. An isotopy is compact/y supported 
if the maps h, are alI equal to the identity map outside some fixed compact set. 

Isotopy Lemma. Given any two points y and z in the connected manifold Y, 
there exists a diffeomorphism h :  Y -----> Y such that h(y) = z and h is isotopic 
to the identity. Moreover, the isotopy may be ta�en to be compactly sup­
ported. 

Prooi If the statement is true for two points y and z, we shall calI them 
"isotopic." It is quite evident that this defines an equivalence relation on Y. 
We shall show that each equivalence class is an open set. Then Y is the dis­
joint union of open sets, so connectivity implies that there can be only one 
equivalence class, which proves the theorem. 

In order to prove that the equivalence classes are open, we will construct 
an isotopy h, on Rk such that ho is the identity, each h, is the identity outside 
some specified small ball around O, and hl (O) is any desired point sufficientIy 
close to O. You can easily finish the proof from there : parametrize a neigh­
borhood of y and use h, to slide y around inside a small bal l ;  each h, extends 
smoothly to a diffeomorphism of Y by defining it to be the identity outside 
the ballo Thus y is isotopic to every sufficiently nearby point, proving open­
nesso 

Construct h, first on R I . Given any E > O, let p be a smooth function that 
vanishes outside (-E, E) and equals l at O. If z E RI , define 

h,(x) = x + tp(x)z. 

Then h,(x) = x if x E (- E, E) or if t = O, and h l (O) = z. Is h, an isotopy? 
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Compute derivatives : h; = l + tp'(x)z. Since I p'(x) I vanishes outside a com­
pact set, it must be bounded. Hence as long as I z I is small enough, I tp'(x)z I < l 
for alI t E [O, l ] ,  x E RI,  so h;(x) > O. Consequently, each h, is strictly in­
creasing, and the Inverse Function Theorem implies that its inverse function 
is also smooth. So each h, is a diffeomorphism of R 1 as long as z is dose 
enough to O. 

In Rk we simply adapt this proof. Given any point in Rk, we may rotate 
the coordinate axes so that the point sits on the first axis. So if we write Rk = 
Rl X Rk- l ,  we need only exhibit the desired isotopy carrying the origin to 
nearby points of the form (z, O). Choose a function u on Rk- I that is one at 
the origin and zero outside some small ball of radius O. Define h, on Rk as 
follows : for (x, y) E RI X Rk- I , Jet 

h,(x, y) = (x + tu(y)p(x)z, y). 

Then h,(x, y) = (x, y) unJess I x l  < E, I y l < O, and t >  O. Also, h l (O, O) = 
(z, O), as desired. We must show each h, to be a diffeomorphism of Rk· when 
I z I is smal!. It is one-to-one and onto, for with I z I small, it induces a diffeo­
morphism on each line y = constant. Moreover, its derivative at the point 
(x, y) E RI X Rk- I  has matrix 

l + tu(y)p'(x)z a l >  . . . , ak- I 

O 

I 

O 

where I is the (k - l )  X (k - l )  identity matrix. When I z I is small, the left­
corner entry is always positive, so the matrix always has positive determinant. 
The Inverse Function Theorem now implies that the inverse of h, is smooth. 

Q.E.D. 

Corollary. Suppose that Y is a connected manifold of dimension greater 
than J ,  and Jet y l ' . . .  , Y n and z I ,  . . .  , Zn be two sets of distinct points in Y. 
Then there exists a diffeomorphism h :  Y -> Y, isotopic to the identity, with 

Moreover, the isotopy may be taken to be compactly supported. 

Prool Argue inductively, for the theorem gives n = 1 .  Assuming the corol­
lary for n - l ,  obtain a compactly supported isotopy h; of the punctured 
manifold Y - [y., zn} such that h/I (y{) = z{ for i < n and h� = identity. 
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Here we use the hypothesis dim Y > l ,  which quarantees that the punctured 
-mani[old is connected. (Proof? Use arc-connectedness.) The compact-sup­

port provision implies that the h; are alI equal to the identity near Yn and Zn, 
so they e

�
tend to diffeomorphisms of Y that fix those two points. 

Similarly, applying the theorem to the punctured manifold 

we obtain a compactly supported isotopy h;' on Y such that h'{(Yn) = Zn> 
h� = identity, and alI h;' fix the points Y/ and ZI, i < n. So h, = h;' o h; is the 
required isotopy. Q.E.D. 

Now we begin the proof of Hopf's theorem. It is convenient here to 
reintroduce explicitly the concept of winding number, which you probably 
noticed lurking beneath the definitions both of local Lefschetz numbers and 
of indices of vector fields. If X is a compact oriented, l-dimensionaI manifold 
andj: X ---> RI+I is a smooth map, the winding number ofjaround any point 
Z E RI+ I -j(X) is defined just as for mod 2 theory. Simply construct the 
direction map u : X --> SI by 

j(x) - Z u(x) = I j(x) - z l '  
and set W(j, z) = deg (u). The first exercise determines how local diffeo­
morphisms can wind, and the second uses this information to count pre­
images. 

1. Letj: U ---> Rk be any smooth map defined on an open subset U of R\ 
and let x be a regular point, with j(x) = z. Let B be a sufficiently small 
closed ball centered at x, and define aj : aB ---> Rk to be the restriction of 
jto the boundary of B. Prove that W(aj, z) = + l ifjpreserves orienta­
tion at x and W(aj, z) = - I if j reverses orientation at x. 

2. Letj: B ---> Rk be a smooth map defined on some closed ball B in Rk. 
Suppose that z is a regular value of j that has no preimages on the 
boundary sphere aB, and consider al : aB -> Rk. Prove that the num­
ber of preimages of z, counted with our usual orientation convention, 
equals the winding number W(al, z). 

Another necessary ingredient will be the following straightforward ex­
tension argument. 

3. Let B be a closed ball in Rk, and letj: Rk - Int (B) -> Y be any smooth 
map defined outside the open ball Int (B). Show that if the restriction 
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af: aB --> Y is homotopic to a constant, thenf extends to a smooth map 
defined on all of Rk into Y. 

With these tools, we now direct our attention toward the Hopf theorem. 
The first step wilI be to establish a special case of the theorem. SubsequentIy, 
we shaII show that the full theorem derives easily from the partial one. 

Special Case. Any smooth mapf: SI --> SI having degree zero is homotopic 
to a constant map. 

4. Check that the special case implies the foIlowing corolIary. 

Corollary. Any smooth map f: SI ---> R/+ 1 - {O} having winding number 
zero with respect to the origin is homotopic to a constant. 

Prove the special case inductively. For l = 1 ,  you have already established 
Hopf's theorem, as Exercise 9, Section 3. So assume that the special case is 
true for l = k - I ,  and extend it to l = k. The foIlowing exercise, which is 
the heart of the inductive argument, uses the coroIlary to puII maps away 
from the origino 

5. Letf: Rk ---> Rk be a smooth map with O as a regular value. Suppose that 
f-1 (0) is finite and that the number of preimage points inf- 1 (0) is zero 
when counted with the usual orientation convention. Assuming the 
special case in dimension k - 1 ,  prove that there exists a mapping 
g : Rk ---> Rk - {O} such that g = f outside a compact set. 

An obvious point worth mentioning before the next step is that becausef 
and g are equal outside a compact set, the homotopy ti + ( 1  - t)g is con­
stant outside a compact set. This fact noted, you need only devise a suitable 
method for reducing Sk to Rk in order to complete the special case. 

6. Establish the special case in dimension k. 

Hopf's theorem in its full generality is essentiaIly a particular instance of 
the folIowing theorem. 

Extension Theorem. Let W be a compact, connected, oriented k + l di­
mensionaI manifold with boundary, and let f: a w ---> Sk be a smooth map. 
Prove that f extends to a globalIy defined map F: W --> Sk, with aF = J, if 
and only if the degree of f is zero. 

In turn, the Extension Theorem foIIows from the special case, but to 
prove it you must first step aside and establish a lemma concerning the topo­
logical triviality of Euclidean space. 
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7. Let W be any compact manifold with boundary, and letf: a w  -> Rk+1  

be any smooth map whatsoever. Prove that f may be extended to all 
of W. 

8. Prove the Extension Theorem. 

9. Conclude : 

The Hopf Degree Theorem. Two maps of a compact, connected, oriented 
k-manifold X into Sk are homotopic if and only if they have the same degree. 

As an illustration of the use of Hopf's Degree Theorem, we shall answer 
a classical question : which compact manifolds possess nonvanishing vector 
fields ? The Poincaré-Hopf Index Theorem supplies a necessary condition, 
the nullity of the Euler characteristic. We shall show that tbis requirement 
is the only one. 

Theorem. A compact, connected, oriented manifold X possesses a nowhere­
vanishing vector field if and only if its Euler characteristic is zero. 

The idea of the proof is to reverse the splitting argument introduced in 
the Lefschetz section and amalgamate the zeros of some arbitrary vector 
field. The Hopf Degree Theorem appears in the Euclidean case. 

lO. Let � be a vector field on Rl with finitely many zeros, and suppose that 
the sum of the indices of its zeros is O. Show that there exists a vector 
field that has no zeros, yet equals � outside a compact set. 

To apply this on X, we merely need to produce a suitable vector field. 

11. Show that on any compact manifold X there exists a vector field with 
only finitely many zeros. 

12. In fact, let U be any open set on the compact, connected manifold X. 
Verify the existence of a vector field having only finitely many zero s, all 
of which lie in U. 

13. Prove the theorem. 

Hints (listed by exercise numbers) 
l .  For simplicity, take x = O = z, and set A = dio. By regularity, A is 

bijective. Write f(x) = Ax + f(X), where f(x)/I x 1 ->  O as 1 x 1 ->  O. 
Show that W(A, O) = W(al, O) if B is small enough ; then use the 
linear isotopy lemma of Section 4 (page 128). 
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2. Circumscribe small balls BI around each preimage point, and show 
that the degree of the directional map U on the boundary of B' = 
B - U BI is zero (since U extends to all of B'). Now use Exercise l .  I 

3 .  Assume that B is centered at O, and let g, : aB ---+ Y be a homotopy 
with g! = al and go = constant. Then a continuous extension of I 
through B is given by I(tx) = I,(x), x E aB and t E [O, 1] .  To extend 
smoothly, just modify this with our standard trick of Exercise l ,  
Chapter l ,  Section 6. 

4. The hypothesis is that the degree of l/I I I is zero, so l/I I I is homo­
topi c to a constant. But as maps into Rk+!  - {O}, I and .171 /1 are 
homotopic. 

5. Take a large ball B around the origin that contains all of/- I (O). Use 
Exercise i to show that al :  aB ---+ Rk - {O} has winding number 
zero. The inductive hypothesis implies that al :  aB ---+ Rk - {O} is 
homotopic to a constant, so Exercise 3 completes the proof. 

6. Pick distinct regular values a and b forI Apply the Isotopy Lemma to 
Sk - I-I(b) to find an open neighborhood U of/- I (a) that is diffeo­
morphic to Rk and that satisfies the requirement b f/:. I(U). Let IX :  Rk 
---+ U be a diffeomorphism, and choose another diffeomorphism 
p :  Sk - {b} ---+ Rk that maps a to O. Now apply Exercise 5 to P o l o  IX 
to find a map g :  Sk ---+ Sk - {b} that is homotopic to ! But since 
Sk - {b} is diffeomorphic to Rk, and thus contractible, g is homotopic 
to a constant. 

7. W sits in some RN. Apply the E-Neighborhood Theorem for a W to 
extend I to a smooth map F defined on a neighborhood U of a W in 
RN. Let P be a smooth function that equals one on a W and zero out­
side a compact subset of U. Now extend I to all of RN by setting it 
equal to pF on U and O outside. 

8. First use Exercise 7 to extend/to a map F: W ---+ Rk+! .  By the Trans­
versality Extension Theorem, we may assume O to be a regular value 
of F. Use the Isotopy Lemma to piace the finite point set F-! (O) in­
side a subset U of Int ( W) that is diffeomorphic to Rk+! .  Let B be a 
ball in U containing F- I (O), and show that aF:  aB ---+ Rk+ ! - {O} 
has winding number O with respect to the origino (For this, note that 
F/I FI extends to the manifold W' = W - Int (B). But we already 
know that its degree on a W is zero. Now apply the corollary of the 
special case.) 

9. Given 10.!1 : X ---+ Sk, set W = X x I, and define the map I: a W ---+ 
Sk to belo on X X {O} and/l on X X { l }. In

v
oke Exercise 8. 

lO. Compare with Exercise 5. 



148 CHAPTER 3 ORIENTED INTERSECTION THEORY 

I l . Assume that X c RN, and let T(X) be its tangent bundle. Define 
p :  X x RN ---> T(X) by making p(x, v) be the orthogonal projection 
ofthe vector v into TiX). Check that p is a submersion, and apply the 
Transversality Theorem with S = RN, Y = T(X), and Z = X x {O}. 
Conclude that, for some v, the vector field x ---> p(x, v) is transversal 
to X X {O}. (An alternative proof, based on the notion of gradient 
vector fields, was suggested in Exercise 1 5, Section 5.) 

1 2. Use the corollary to the Isotopy Lemma. (A procedure for pulling 
vector fields back with diffeomorphisms was demonstrated in Sec­
tion 5.) 

13.  Use Exercises I l  and 12 to get a vector field on X with finitely many 
zeros, all contained in an open set U that is diffeomorphic to Rk. The 
Poincaré-Hopf theorem implies that the sum of the indices is zero, so 
pull the field back to Rk and apply Exercise IO. 

§7 The Euler Characteristic 

a n d  Triangulations 

Although the originaI definition of the Euler characteristic as a 
self-intersection number may have appeared strange and unmotivated, we 
have already discovered that it expresses fundamental topological informa­
tion. The vector fields and mappings admitted by a compact oriented mani­
fold are strictly limited by its Euler characteristic. Yet this invariant is really 
far more primitive than you might expect ; however, in order to see this point, 
we must reexamine manifolds from quite a different perspective. 

One way to try to understand the anatomy of an object is to dissect it into 
familiar pieces, then examine the way the pieces fit together. We might, for 
instance, slice a surface X into "polygons." 

This section is to be strictly informaI and intuiti ve. There is no need to 
prescribe the technical conditions for allowable partitions of X. Simply break 
up X into pieces that look like curved copies of standard pIane polygons­
triangles, squares, and so ono (See Figure 3-2 1 .) The most common procedure 
is to use only triangles, so such dissections are called triangulations. 

Now just count the parts. Let F denote the number of polygonal faces, E 
the number of edges, and V the number of vertices on our tesselated surface. 
If you draw a few examples on the sphere-and you are as brilliantly obser­
vant as Descartes or Euler (or if you remember your high school geometry 
class)-you might notice that the following relation is, in each case, satisfied : 
F - E +  V = 2. 

The constancy of this aIternating sum is not a property unique to the 
sphere. In fact, however we triangulate a compact surface X, F - E + V 
will always equal a constant characteristic of the surface, its Euler char-
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A polygonal sphere 

Figure 3-21 

acteristic. Proving this theorem is not difficult for us, as long as we are 
not carefui about detaiis. It  is easy to convince yourself that there exists a 
vector field on X that has a source in each poIygonai face, a saddie on each 
edge, a sink at each vertex, and no other zeros. As the indices of sources, 
saddIes, and sinks are, respectively, + 1 ,  - I ,  + 1 ,  we obtain the theorem 
F - E + V = X(X) from the Poincaré-Hopf theorem. The idea of the con­
struction is simpIy to pIace the appropriate zeros on X and then assert with 
conviction that it is obvious that the remainder of the field can be smoothly 
interpolated. The picture on one triangular face should be convincing (Figure 
3-22). 

The same proof outIine is valid in higher dimensions. If X is k dimen­
sionaI, then one uses k-dimensional generalizations of poIygons and obtains 
the Euler characteristic of X as the alternating sum 

k � (- 1 )1.· (mimber of "faces of dimension j"). 
j = O  

t 
Figure 3-22 
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The important point to recognize is how elementary and unsophisticated 
this powerful invariant truly is ! 

EXERCISES 

1. Show that if the Euler sum F - E + V equals the Euler characteristic 
for triangulations that actually consist of triangles, then it does so as well 
for "dissections" admitting arbitrary polygons. 

2. CaIculate the Euler characteristics of the sphere S2 and the torus by 
using triangulations. 

3. Think of the surface of genus k as a sphere with k tubes sewn in. Cal­
culate its Euler characteristic by triangulating. [HINT: Remove 2k non­
adjacent faces from S2 ; what happens to the Euler sum ? Triangulate 
a closed cylinder SI X [O, I ]  and check that the Euler sum is zero. Now 
sew it into two of the holes, and verify that there is no change in the 
Euler sum of the sliced sphere.] 



CHAPTER 4 

I n tegration  

on  Ma n ifo lds  

§1 I ntroduction 

Until now we have studied manifolds from the point of view of 
differential calculus. The last chapter introduces to our study the methods of 
integraI calculus. As the new tools are developed in the next sections, the 
reader may be somewhat puzzied about their reievancy to the earlier material. 
Hopefully, the puzziement will be resolved by the chapter's en

d
, but a pre­

liminary ex ampIe may be heIpful. 
Let 

p(z) = zm + a1zm- 1 + . . . + am 
be a complex polynomial on n, a smooth compact region in the pIane whose 
boundary contains no zero of p. In Section 3 of the previous chapter we 
showed that the number of zeros of p inside n, counting multiplicities, 
equals the degree of the map 

A famous theorem in complex variabie theory, called the argument principle, 
asserts that this may also be calculated as an integraI, 

f d(arg p). 
òO 

151 
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You needn't understand the precise meaning of the expression in order to 
appreciate our point. What is important is that the number of zeros can be 
computed both by an intersection number and by an integraI formula. 

Theorems like the argument principal abound in differential topology. 
We shall show that their occurrence is not arbitrary or fortuitous but is a 
geometrie consequence of a generaI theorem known as Stokes theorem. Low­
dimensionaI versions of Stokes theorem are probably familiar to you from 
calculus : 

l .  Second Fundamental Theorem of Calculus : 

f: f'(x) dx = I(b) - I(a). 

2. Green's Theorem in the piane : 

3. Divergence Theorem in 3-space : 

f f f div F dv = f f F · � dA, 
ao 

4. Classica I Stokes Theorem in 3-space : 

f Il dx + 12 dy + 13 dz = f f � . curI F dA 
" s 

+ (ali _ a13) dz 1\ dx az ax 

+ (a12 _ ali) dx 1\ dy. 
ax ay 

The argument principal, in particular, may be easily deduced from Green's 
theorem provided that you know a little about complex analytic functions. 

The preceding formulas share a common spirit ; they alI explain how to 
calculate an integraI over a bounded region by an integrai over the boundary 
alone. It is reasonable to expect that such relations can be generalized to 
arbitrary manifolds of any dimension, but it is not at alI clear how they should 
be formulated. Part of the problem is just making sense of infinitesimal ex-
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pressions like 

Il dx or (a12 - ali) dx dy. 
ax ay 

153 

Elementary calculus books tend not to worry too much about these inte­
grands, but one must be more scrupulous in higher dimensions. So we shall 
have to endure some formalism as the next section develops the algebra 
needed to define and manipulate infinitesimals. Then in Section 3 we intro­
duce the appropriate integrands, abstract objects called differential forms. 

It seems hopeless to provide at the outset a satisfactory, intuitive motiva­
tion for differential forms. Only experience with them can convince the stu­
dent that these formaI entities, with their special algebraic properties, provide 
the most natural basis for integration theory. Expressed in the language of 
forms, the generaI Stokes theorem becomes simple and elegant. And, in 
truth, isn't simplicity the ultimate test of the basic concepts of any theory ? 
Why, for instance, did physics formulate the laws of mechanics in terms of 
momeruum and energy rather than with some other arbitrary functions of 
mass and velocity ? The reason is that those quantities enormously simplify 
the basic equations, thereby making the subject easier to understand. As for 
intuition, how forbiddingly formaI were such notions as electric fields or 
complex numbers until their obvious convenience forced us to employ them, 
developing experience with time ? 

§2 Exterior Algebra 

In order to establish an algebraic basis for differential forms, 
we begin by defining certain generalizations of the dual space to a reaI vector 
space V. A p-tensor on V is a real-valued function T on the cartesian product 

VP = V x . . .  x V, -------­
p times 

which is separately linear in each variable, or mu/tilinear. That is, holding alI 
but the jth variable constant, we have the usual linearity condition 

T( v I ,  . . .  , v j + av�, . . . , v p) = 
T(v l , • • •  , vj, • • •  , vp) + aT(v l , • • •  , v�, . . .  , vp). 

In particular, I -tensors are just linear functionals on V. A familiar 2-tensor is 
dot product on Rk. Also on Rk you know a k-tensor-namely, the determi­
nant. For any k vectors V I ' . . .  , Vk E Rk can be arranged into a k x k 
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matrix 

(J 
and the determinant o f  this matrix i s  muItilinear with respect t o  the row 
vectors ; denote it by det (VI '  . . .  , vk). 

As sums and scalar multiples of multilinear functions are stili muItiIinear, 
the collection ofaIl p-tensors is a vector space 3P(V*). Note that 31 ( V*) = V*. 
Tensors may also be muItiplied in a simple way ; if T is a p-tensor and S a 
q-tensor, we define a p + q tensor T @  S by the formula 

T@ S is called the tensor product of T with S. Note that the tensor product 
operation is not commutative, 

but it is easy to check that it is associative and that it distributes over addition. 
Tensor product cIarifies the manner in which 3P(V*) extends V*. 

Theorem. Let fl/>l >  . . .  ' I/>d be a basis for V*. Then the p-tensors 
fl/>/t @ . . .  @ 1/>1. : I < il , • . .  , ip < k} form a basis for 3P(V*). Conse­
quentIy, dim 3P(V*) = kp• 

Proo! During the proof (only) we shall use the following notation. If 
I = (il, . . .  , i p) is a sequence of integers each between l and k, let 

Let fVI> . . .  , vd be the dual basis in V, and denote by VI the sequence 
(vlt, • • • , VI.). By definition, if I and J are two such index sequences, I/>/(VJ) is 
l if I = J and O if I =1= J. It is cIear from muItilinearity that two p-tensors T 
and S are equal if and only if T(vJ) = S(vJ) for every index sequence J. Thus 
if we are given T, the tensor 

must equal T; hence the fl/>/} span 3P(V*). The 1/>1 are also independent, for if 
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then 

for each J. Q.E.D. 

A tensor T is alternating if the sign of T is reversed whenever two variables 
are transposed : 

Ali I -tensors are automatically aIternating. The determinant is al so aIternat­
ing, but the dot product is not. It is useful to rephrase this condition slightly. 
Let S p denote the group of permutations of the numbers I to p. Recall that a 
permutation 1t E Sp is called even or odd, depending on whether it is expres­
sible as a proçluct of an even or odd number of simple transpositions. Let 
(_ ) n be + I or - I ,  depending on whether 1t is even or odd. For any p-tensor 
T and any 1t E Sp, define another p-tensor P by 

Then, c1early, the alternating p-tensors are those satisfying 

for all 1t E Sp 

Note that (P)" = p.a always holds. 
There is a standard procedure for making aIternating tensors out of 

arbitrary ones. If T is any p-tensor, define a new one Alt (T) by 

Note that Alt (T) is in fact alternating, for it is obvious that (_ 1)n.a = 
(- I )n( - 1 )". Thus 

[Alt (T)Y = 1, � ( _ 1)n(p)a = 1,( - 1)" � (_ 1 )n.ap.a. 
p .  nES. p .  nES. 

If we set 't' = 1t o G, then, because Sp is a group, as 1t ranges through Sp so 
does 't'. Thus 

[Alt (T)]" = (_ 1 )a1, � (- I)<P = (- 1)" Alt (T), p .  < e s. 

as claimed. 
Also note that if T is already alternating, then Alt (T) = T, for each sum­

mand (- I )np equals T, and there are exactIy p !  permutations in S P' 
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Since sums aÌ1d scalar multiples of alternating functions continue to 
alternate, the alternating p-tensors form a vector subspace Ap( V*) of 3P( V*). 
,Unhappily, tensor products of alternating tensors do not alternate. but here 
the Alt operator can be useful. If T E Ap(V*) and S E Aq(V*), we define 
their wedge producI 

to be Alt (T @ S). t The wedge product clearly distributes over addition and 
scalar multiplication, because Alt is a linear operation ; however, proving 
associativity will require some work. We need a calculation. 

Lemma. If Alt (T) = O, then T 1\ S = O = S 1\ T. 

Proof Sp+q carries a natural copy of Sp-namely, the subgroup G consisting 
of ali permutations of ( I ,  . . .  , p  + q) that fix p + l ,  . . .  , p  + q. The cor­
respondence between G and Sp assigns to each 1t E G the permutation 1t' 
induced by restricting 1t to ( l ,  . . . , p). Note that (T @ s)n = Tn' @ S, and 
(- l)n = (-l)n'. Thus 

I; (-I)n(T @ S)n = [ I; (- l )n'p'] @ S = Alt (T) @ S  = O. 
nEO n'ESll 

Now a subgroup G decomposes S p+q into a disjoint union of right cosets 
G o a = {1t o a :  1t E G}. But for each such coset, 

I; (- l y"'(T @ sy'" = (- I)"[I; (-I)n(T @ s)n]" 
= O. 

nEO nEG 

Since T 1\ S = Alt (T @ S) is the sum of these parti al summations over the 
right cosets of G, then T 1\ S = O. Similarly, S 1\ T = O. Q.E.D. 

Theorem. Wedge product is associative, 

(T 1\ S) 1\ R = T 1\ (S 1\ R), 

justifying the notation T 1\ S 1\ R. 

Proof We claim that (T 1\ S) 1\ R equals Alt (T @ S @ R). By definition, 

(T 1\ S) 1\ R = Alt « T 1\ S) @ R), 

so the linearity of Alt implies 

(T 1\ S) 1\ R - Alt (T @ S @ R) = Alt ([T 1\ S - T @ S] @ R). 

tThere is always some question about normalizing the definition of /\ .  Spivak, for 
example, inc\udes some factorial multipliers. We have chosen to keep the algebra simple, 
but we shall be haunted by the ghost of the vanished factorials when we discuss volumes. 



§2 Exterior Algebra 

Since T 1\ S is alternating, 

Alt (T 1\ S - T @ S) = Alt (T 1\ S) - Alt (T@S) 
= T 1\ S - T 1\ S = O. 

So the lemma implies 

Alt ([T 1\ S - T @ S] @ R) = O, 

as needed. A similar argument shows 

T 1\ (S 1\ R) = AIt (T @ S @ R) Q.E.D. 
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The formula T 1\ S 1\ R = Alt (T @ S @ R), derived in the proof above, 
obviously extends to rei ate the wedge and tensor products of any number of 
tensors. We can use it to derive a basis for Ap(V*). For if T is a p-tensor, then 
we may write 

where {<P I ' . . .  , <Pk} is a basis for V*, and the sum ranges over ali index se-
quences (il ' . . .  , ip) for which each index is between l and k. If T alternates, 
then T = Alt (T), so 

T = I: ti •. . . . .  I. Alt (<PI. @ . . .  @ <Plp) = I: ti .. . . . .  Ip <PI. 1\ . . . 1\ <Plp' 

Henceforth we shall denote the alternating tensors <Pii 1\ . . . 1\ <Plp by <PI' 
where I = (il , ' "  , ip). We have shown that the <PI span Ap(V*) ; however, 
due to a fundamental property of the wedge product, they are not inde­
pendent. 

Suppose that <P and ljI are any linear functionals on V, <p,1jI E A1 (V*). In 
this case, the Alt operator takes a very simple form : 

Observe that 
<P 1\ ljI = -1jI 1\ <P and <P 1\ <P = O, 

showing that 1\ is anticommutative on A I (V*). As you will discover, the 
anticommutativity of wedge product on l -forms is its fundamental property. 
In fact, the essential reason for developing the algebra of alternating tensors is 
to build anticommutativity into the foundation of integration theory. 

Anticommutativity introduces some relations into the set of spanning 
tensors {<P/}' If two index sequences I and J differ only in their orderings, 
iterated application of anticommutativity shows that <PI = ±<p,. And if any 
of the indices of I are equal, <PI = O. Consequently, we can eliminate redun­
dancy in the spanning set by alIowing only those <PI for which the index 
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sequence is strictly increasing : I < il < i2 < . . . < ip < k. The number of 
such sequences is the number of ways one can choose p items from the set 
[ I ,  . . . , k}, namely, ( k ) k !  

P = p !(k - p) ! ' 

It is easy to see that the remaining tensors are linearly independent. Let 
{VI ' . . .  , vd be the basis for V dual to {efi l ' . . . , efid. For any increasing index 
sequence I = (il > . . .  , ip), let VI = (Vi" . . .  , Vi.)' The definition of the Alt 
operator then shows that efi/(V/) = l /p !, but if J is a different increasing index 
sequence, then efilv,) = O. Thus if I: a/efil = O is a relation among the new 
spanning set, then 

shows that each al = O. We have proved 

Theorem. If {efi l ' . . .  , efid is a basis for V*, then {efi/ = efi/, 1\ . . . 1\ efii. : 
l < il '  . . .  , ip < k} is a basis for Ap(V*). Consequently, 

d· AP(V*) - ( k ) _ k !  1m - p - p !(k _ p) ! 

Suppose that the index sequence I has length p, while J has length q. From 
the anticommutativity of 1\ on A I (V*), you can quickly show that 

The foregoing basis theorem therefore implies 

Corollary. The wedge product satisfies the following anticommutativity 
relation : 

whenever 
T E Ap(V*) and S E N(V*). 

The basis theorem al so implies that A k(V*) is one dimensionaI, where 
k = dim V. Y ou have probably known this for years, although in this form 
the statement looks unfamiliar. We already know one nonzero alternating 
k-tensor on R\ the determinant tensor det. So dim Ak(Rk*) = I just means 
that every alternating k-multilinear function on Rk is a multiple of the deter­
minant, a fact you know as "the uniqueness of the determinant function." 
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If the length of the index sequence I is greater than the dimension k 
of V, then I must repeat at least one integer ; thus if>r = O. We conclude that 
AP(V*) = O if p > k, so the sequence of vector spaces A I (V*), A2(V*), . . .  
terminates at A k(V*). It is useful to add one more entry to this list by defining 
A O(V*) = R, which is interpreted as the constant functions on V. We extend 
A by simply letting the wedge product of any element in R with any tensor 
in Ap(V*) be the usual scalar multiplication. The wedge product then makes 
the direct sum 

a noncommutative algebra, called the exterior algebra of V*, whose identity 
element is 1 E A O( V*). 

One further construction is basico Suppose that A :  V -> W is a linear 
map. Then the transpose map A* :  W* -> V* extends in an obvious man­
ner to the exterior algebras, A * :  Ap( W*) -> AP( V*) for alI p > 0. If 
T E Ap( W*), just define A*T E Ap(V*) by 

for alI vectors VI > • • •  , Vp E V. It is easy to check that A* is linear and that 

A*(T A S) = A*T A A*S. 

So A * is an algebra homomorphism : A( W*) -> A( V*). Note that if B: W -> U 
is another linear map, then (BA)* = A*B*. 

In particular, suppose that A :  V -> V is an isomorphism, and dim V = k 
as usual. Then A * : A k( V*) -> A k( V*) is a linear map of a one-dimensional 
vector space, hence it must be multiplication by some constant À E R, i.e., 
A*T = ÀT for alI T E Ak(V*). We claim that À is just the determinant of A. 
We know that det E Ak(RU). So choose any isomorphism B :  V -> R\ and 
consider T = B*(det) E Ak(V*). Then A*B*(det) = ÀB*(det), implying 

B*- IA*B*(det) = À(B*)- I B*(det) = À(BB- I)*(det) = À(det) 
or 

(BAB- I )*(det) = À(det). 

Now evaluate both sides of this equation on the standard ordered basis 
{el ' . . .  , ed for Rk. A quick check of the definition of the tensor det shows 
that, for any linear map C, det (Cel, . . . , Cen) = det (C). Thus 

À = det (BAB- I) = det (A) 
as claimed, proving 
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Determinant Theorem. If A :  V --> V is a linear isomorphism, then 
A*T = (det A)T for every T E Ak( V), where k = dim V. In particular, if 
<p) ,  . . .  , <Pk E A1(V*), then 

A*<p )  1\ . . . 1\ A*<Pk = (det A) <p) 1\ . . .  1\ <Pk' 

EXERCISES 

1. Suppose that T E Ap( V*) and VI> • • •  , Vp E V are linearly dependent. 
Prove that T(v) , . . . , Vp) = O for alI T E AP( V*). 

2. Dually, suppose that <p ) ,  . . .  , <pp E V* are linearly dependent, and 
prove that <p )  1\ . . .  1\ <pp = O. 

3. Suppose that <PI > • • •  , <Pk E V* and V ) ,  • • •  , Vk E V, where k = dim V. 
Prove that 

where [<pJvJ)] is a k x k real matrix. [HINT : If the <Pi are dependent, 
then the matrix has linearly dependent rows, so Exercise 2 suffices. If 
not, the formula is easily checked for the dual basis in V. Now verify 
that the matrix does specify an alternating k-tensor on V, and use 
dim Ak(V*) = I .] 

4. More general1y, show that whenever <p) ,  . . .  , <pp E V* and VI>  • • •  , Vp 
E V, then 

[HINT: If the Vi are dependent, use Exercise l .  If not, apply Exercise 3 to 
the restrictions <Pi of <Pi to the p-dimensionaI subspace spanned by V) ,  
• . .  , vp o] 

*6. (a) Let T be a nonzero element of Ak(V*), where dim V = k. Prove that 
two ordered bases {VI > ' "  , vd and {v') , . . .  , v�} for V are equiva­
lent1y oriented if and only if T(vl > . . .  , vk) and T(v') , . . .  , vD have 
the same sign. [HINT: Determinant theorem.] 

(b) Suppose that V is oriented. Show that the one-dimensional vector 
space Ak( V*) acquires a natural orientation, by defining the sign of 
a nonzero element T E Ak( V*) to be the sign of T(v) ,  . . .  , vk) for 
any positively oriented ordered basis {v) '  . . . , vd for V. 
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(c) Conversely, show that an orientation of Ak(V*) naturally defines an 
orientation on V by reversing the above. 

7. For a k x k matrix A, let A' denote the transpose matrix. Using the 
fact that det (A) is multilinear in both the rows and columns of A, 
prove that det (A') = det (A). [HINT: Use dim Ak(RU) = 1 ]  

8. Recall that a matrix A. is orthogonal if AA' = I. Conclude that if A is 
orthogonal, det (A) = ± 1 .  

9. Let V be a k-dimensional subspace of RN. Recall that a basis 
V I '  • • •  , Vk of V is orthonormal if 

i = j 
i =1= j. 

Let A :  V -> V be a linear map, and prove the following three condi­
tions equivalent : 
(a) Av·Aw = v · w  for alI V,W E V. 
(b) A carries orthonormal bases to orthonormal bases. 
(c) The matrix of A with respect to any orthonormal basis is orthog­

onal. 
Such an A is called an orthogonal transformation. [Note, by (b), it must 
be an isomorphism.] 

*10. (a) Let V be an oriented k-dimensional vector subspace of RN. Prove 
there is an alternating k-tensor T E Ak(V*) such that T(vl > '  . . , Vk) = 
l jk !  for all positively oriented ordered orthonormal bases. Fur­
thermore, show that T is unique ; it is called the volume element 
of V. [HINT : Use the determinant theorem, Exercises 8 and 9, plus 
dim Ak(V*) = l for uniqueness.] 

(b) In fact, suppose that tPI " "  , tPk E V* is an ordered basis dual to 
some positively oriented ordered orthonormal basis for V. Show that 
the volume element for V is tP I À . . . 1\ tPk' [HINT : Exercise 3.] 

*11. Let T be the volume element of R2. Prove that for any vectors VI >V2 E 
R2, T(vl >  V2) is ± one half the volume of the parallelogram spanned by 
VI and V2• Furthermore, when VI and V2 are independent, then the sign 
equals the sign of the ordered basis {VI >  v2} in the standard orientation 
of R2. Generalize to R3. Now how would you define the volume of a 
parallelepiped in Rk ? 

12. (a) Let V be a subspace ofRN. For each V E V, define a linear.function­
al tPv E V* by tPv(w) = V· w. Prove that the map V -> tPv is an 
isomorphism of V with V*. 
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(b) Now suppose that Vis oriented and dim V = 3 .  Let Tbe the volume 
element on V. Given U,V E V, define a linear functional on V by 
w --> 3 !  T(u, v, w). By part (a), there exists a vector, which we denote 
u X v, such that T(u, v, w) = (u X v) . w for alI w E V. Prove that 
this cross prodUCI satisfies u X v = -v X u. Furthermore, show 
that if [VI ' V2, v3} is a positively oriented orthonormal basis for V, 
then VI X V2 = v3 , V2 X V3 = VI ' and V3 X VI = V2. (AIso, V X V 
= O always.) 

§3 Differential  Forms 

In c1assical differential geometry, forms were symbolic quantities 
that looked like 

These expressions were integrated and differentiated, and because experience 
proved anticommutativity to be convenient, they were manipulated like 
alternating te

n
sors. Modern differenti al forms 10calIy reduce to the same 

symbolic quantities, but they possess the indispensable attribute of being 
globalIy defined on manifolds. Global definition of integrands makes possible 
global integration. 

Definition. Let X be a smooth manifold with or without boundary. A 
p-form on X is a function w that assigns to each point x E X an alternating 
p-tensor w(x) on the tangent space of X at x; w(x) E AP[Tx(X)*]. 

Two p-forms Wl and 002 may be added point by point to create a new 
p-form Wl + 002 : 

Similarly, the wedge product of forms is defined point by point. If W is a 
p-form and O is a q-form, the p + q form w 1\ O is given by (w 1\ O)(x) = 
w(x) 1\ O(x). Anticommutativity w 1\ O = (- \ )PqO 1\ w follows from the 
analogous equation at each point. 

O-forms are just arbitrary real-valued functions on X. 
Many examples of l -forms can be manufactured from smooth functions. 

If t/J :  X --> R is a smooth function, dt/Jx :  TxCX) --> R is a linear map at each 
point x. Thus the assignment x --> dt/Jx defines a l -form dt/J on X, called the 
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differential of rp. In particular, the coordinate functions XI' . . .  , Xk on Rk 
yield l -forms dxl ,  . . . , dxk on Rk. Now at each Z E R\ Tz(Rk) = Rk ; check 
that the important differentials dx I ,  . • •  , dXk have the specific action 
dx;(z)(al >  . . .  , ak) = ai' Thus at each z E R\ the linear functionals 
dxl(z), . . .  , dxk(z) are just the standard basis for (Rk)* . 

In terms of dxl ,  . . .  , dxk it is easy to write down ali forms on an open 
subset U of Euclidean space. For each strictly increasing index sequence 
I = (il >  . . .  , ip), let 

a p-form on Rk. Then from the basis theorem for the individuai vector spaces 

we obtain at once 

Proposition. Every p-form on an open set U c Rk may be uniquely expres­
sed as a sum "E-III dxl, over increasing index sequences I = (il < . . . < ip), 
the II being functions on U. 

The proposition says that forms in Euclidean space are really the sym­
bolic quantities of c1assical mathematics-except that our symbols have 
precise meanings. Here is an easy exercise that will force you to check your 
understanding of the definitions : show that if rp is a smooth function on R\ 
then 

(The formula itself is obvious, but what do the two sides mean ?) 
One of the important features of forms is that they pull back naturally 

under smooth mappings. If I: X -> Y is a smooth map and cv is a p-form 
on Y, we define a p-form/*cv on X as follows. H/(x) = y, then /induces a 
derivative map dix : Tx(X) -> Ti Y). Since cv(y) is an alternating p-tensor on 
Ti Y), we can pull it back to TxCX) using the transpose (dlx)*, as described 
in the previous section. Define 

I*cv(x) = (dIJ*cv[f(x)]. 

Then I *cv(x) is an alternating p-tensor on T x(X), so I*cv is a p-form on X, 
called the pul/back of cv by f When cv is a O-form-that is, a function on 
Y-then/*cv = cv o J, a function on X. Remember that l* pulls back forms, 
it does not push them forward : when I: X -> Y, I* carries forms from Y 
to X. 
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Before we unravel the definition of f*, prove the following formulas : 

f*(wl + (2) = f*wI + f*W2 
f*(w A e) = (f*w) A (f*e) 

(foh)*w = h*f*w. 

Now let's see explicitly whatf* does on Euclidean space. Let U c Rk and 
V c Rl be open subsets, and let f :  V -> U be smooth. Use XI > . . .  , Xk for 
the standard coordinate fllnctions on Rk and Y I , . . . , YI on RI. Write f con­
cretely asf = (fl ' . . .  .Jk), eachfi being a smooth fllnction on V. The deriva­
tive di;, at a point Y E V is represented by the matrix 

and its transpose map (di;,)* is represented by the transpose matrix. Conse­
quently, 

(You should convince yourself of this formula's validity before proceeding 
further. Can you explain the exact meaning of each term ?) 

Knowing the behavior of f* on the O-forms and on the basic l -forms dXi 
determines it completely. For an arbitrary form w on V may be written 
uniquely as 

Now application of the abstract properties of f* listed above gives 

Rere the function f*aI = al o fis the pullback of the O-form al from V to V, 

and we use fI to denote fil A . . .  A fl • . 
One example is crucially important. Suppose that f: V -> V is a diffeo­

morphism of two open sets in Rk and w = dXI A . . .  1\ dXk (the so-called 
volume farm on V). If f(y) = X, both T/ V) and Tx(U) are equal to Rk, 
although in the coordinate notation we have been using, the standard 
basis of linear functions on Rk is written as dYI(Y)' . . .  , dYk(Y) for T/ V) but 
as dxl(x), . . .  , dXk(X) for TA U). The determinant theorem of Section 2 now 
gives us the formula 

f*w(y) = (df)* dx l (x) A . . .  A (df)* dXk(X) 

= det (dfy) dYI(Y) A . . .  A dYk(Y)· 
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More succinctly, 

f*(dx l 1\ . . . 1\ dxk) = det (d!) dYl  1\ . . .  1\ dYk' 

where we denote by det (df) the function Y -> det (dfy) on V. 
A form w on an open set U c Rk is said to be smooth if each coefficient 

function al in its expansion L:I al dXI is smooth. It is clear from the preceding 
generai calculation that when f: V -> U is a smooth map of open subsets of 
two Euclidean spaces, then f*w is smooth if w is. 

More generally, we define smoothness for a form w on Xto mean that for 
every local parametrization h :  U -> X, h*w is a smooth form on the open set 
U in Rk. Of course, one need not really check every parametrization, only 
enough of them to cover X; if ha. : Ua. -> X is any collection of local para me­
trizations covering X (i.e., Ua. h,.(Ua.) = X), then the form w is smooth pro­
vided that each pullback h;w is smooth. For if h :  U -> X is another local 
parametrization, then we can write the domai n U as the union of open sub­
domains h- l [ha.(Ua.)]' And on each h- l [ha.(Ua.)]' the identity h*w = (h; l oh)*h;w 
shows that h*w is smooth. 

Since we are only interested in smooth forms, from now on the word 
"form" will implicitly mean "smooth form." 

We close the section with one final exercise to test your grasp of these 
formalities. Work it out directly from the definitions, without recourse to any 
of the computations we made in Euclidean space. 

Exercise. Let f: X -> Y be a smooth map of manifolds, and let ifJ be a 
smooth function on Y. Then 

f*(difJ) = d(f*ifJ)· 

§4 I nteg ration on M a n i folds 

Forms were created for integration, but what makes them the 
appropriate integrands ? Perhaps their fundamental quality is that they 
automatically transform correctly when coordinates are changed. Recall the 
following important theorem from calculus (proofs of which can be found in 
many texts-for example, Spivak [2], p. 67). 

Change or Variables in Rk. Assume that f: V -> U is a diffeomorphism of 
open sets in Rk and that a is an integrable function on U. Then 

Here we follow our earlier notation by using det (d!) to denote the function 



166 CHAPTER 4 INTEGRATION ON MAl-UFOLDS 

Y --> det (d};,) on V. It is also easy to see that the theorem holds in the half­
space Hk as welI. 

When we change variables by such a mapping J, functions like a are 
transformed into their obvious pulIbacks a o f Yet this transformation is not 
natural from the point of view of integration. Since I distorts volume as it 
forces V onto U, the integrai of a o I is not the same as the integrai of a. One 
must compensate by including the factor I det (d!) I, which measures the in­
finitesi mal alteration of volume. Forms automaticalIy counteract this volume 
change. Consider, for example, the originai integrand to be not the function 
a, with dx 1 • •  , dXk serving as a formai symbol of integration, but the 
k-form co = a dx 1 1\ . . . 1\ dxk• Then define 

fu co = fu a dxI . . .  dxk• 

As calculated in the last section, co pulls back to the form 

I*(co) = (a 0/) det (df) dYI 1\ . . .  1\ dYk 
If I preserves orientation, then det (d!) > O, so [*co is exactly the integrand 
on the right in the Change of Variables Theorem. Every k-form co on U is 
a dX1 1\ . . .  1\ dXk for some function a, so if we calI co "integrable" when a is, 
the theorem attains a very natural formo 

Change or Variables in Rk. Assume that l: V --> U is an orientation-pre­
serving diffeomorphism of open sets in Rk or Hk, and let co be an integrable 
k-form on U. Then 

fu co = fv f*co. 
If I reverses orientation, then 

fu co = -fv f*co. 
If you trace back through the previous sections, you will discover that the 

automatic appearance of the compensating factor det (di) is a mechanical 
consequence of the anticommutative behavior of I -forms : dx, 1\ dXj = 
-dxJ 1\ dx,. So you see, the entire algebraic apparatus of forms exists in 
order to provide integrands that transform properly for integration. 

This transformation property is important because it alIows us to inte­
grate forms on manifolds, where we have no recourse to standard coordi­
nates as in Euclidean space. Let co be a smooth k-form on X, a k-dimensional 
manifold with boundary. The support of co is defined as the closure of the 
set ofpoints where co(x) * O ;  we assume this closure to be compact, in which 
case co is said to be compactly supported. At first, assume also that the support 
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of w is contained inside a single parametrizable open subset W of X. Then if 
h :  U --> W is an orientation-preserving diffeomorphism of W with an open 
subset U c Hk, h*w is a compactly supported, smooth k-form on U. There-
fore h*w is integrable, and we define f x w = fu h*w. What if g : V --> W is 
another such parametrization of W? Then j = h- J o g is an orientation­
preserving diffeomorphism V --> U, so 

fu h*w = f v j*h*w = f v g*w. 

Thanks to the transformation properties of forms, f x 
w has an intrinsic 

meaning, independent of the choice of parametrization. If our propaganda 
has not yet made you a true believer in forms, we invite you to try defining 
the integraI of a function. 

Now, in order to define the integraI of an arbitrary, compact1y supported, 
smooth k-form w on X, we simply use a partition of unity to break up w into 
pieces with parametrizable supporto The collection of parametrizable open 
subsets of X forms an open cover ; choose a subordinate partition of unity 
{ptl. (Recall the definition, page 52.) The local finiteness property of {Ptl 
implies that alI but finitely many of them are identicalIy zero on the compact 
support of w. Thus only finitely many of the forms PiW are nonzero, and each 
one has compact support inside a parametrizable open set. Define 

Showing that f x w does not depend on the particular partition of unity 
is easy. First, however, observe that ifthe support of w is actuaIIy inside some 
parametrizable open set, then the two definitions of f 

x 
w just given agree. 

Since 1;1 PI(X) = l at every x E X, 

Then the linearity of puIIback and of integration on Euclidean space imply 

as needed. Now suppose that {p�} is another suitable partition of unity. Then 
from what we have just observed, for each i, 
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similarly, for each j, 

Then 

showing that f x w is the same when caIculated with either partition. 

lt is trivial to check that f x has the standard Iinearity properties : 

f X (Wl + (02) = f x Wl + f 
X 002 and f x cw = c f x W if c E R. 

We al so let you verify that our generalized integration theory continues to 
beh ave properly when domains are changed. 

Theorem. If I: Y -> X is an orientation-preserving diffeomorphism, then 

for every compactly supported, smooth k-form on X (k = dim X = dim Y). 

You might also convince yourself that this transformation property 
absolutely determines our theory. We have constructed the only linear opera­
tion on compactIy supported forms that transforms naturally and that re­
duces to usual integration in EucIidean space. 

Although we can only integrate k-forms over the k-dimensional X, we 
can integrate other forms over submanifolds. If Z is an oriented submanifold 
of X and W is a form on X, our abstract operations give us a natural way of 

, "restricting" W to Z. Let i: Z c.- X be the incIusion map, and define the 
restriction of W to Z to be the form i*w. lt is obvious that when w is a O-form, 
i*w is just the usual restriction of the function w to Z. Now if dim Z = l and 
w is an l-form whose support intersects Z in a compact set, we define the 
integraI of w over Z to be the integraI of its restriction, 

f z OO  = f z 
i*w. 

Let's work out some specific examples. Suppose that 

00 =11 dXI + 12 dX2 + 13 dX3 
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is a smooth l -form on R3, and let y :  1 ->  R3 be a simple curve, a diffeo­
morphism of the unit interval I = [O, 1 ] onto C = y(/) a compact one-mani­
fold with boundary. Then 

If 

then 

so we obtain 

fe ro = L y*ro. 

Y* dx. = dy. = 
dy/ dt • • dt ' 

f ro = t f'f/[y(t)]dd
Y/ (t) dt. 

e I� I o t 

If we define f to be the vector field (/1 '/2'/3) in R3, then the right side is 
usually called the fine integrai of f over C and denoted f f dy. 

Next on R3, consider a compactly supported 2-form 

We integrate ro over a surface S, which, for simplicity, we assume to be the 
graph of a function. G: R2 -> R, X3 = G(xl , x2). (See Figure 4-1 .) (This as­
sumption is not really restrictive because, locally, any surface may be written 
as the graph of a function, although one must sometimes write XI or X2 as a 
function of the other two coordinates rather than the usual X3 .) 

What is f s ro? We can choose for S the parametrization h :  R 2 -> S de­
fined by 

Compute : 
h* dx, 1\ dX2 = dx, 1\ dX2 ; 

h* dX2 1\ dX3 = dX2 1\ dG = dX2 1\ (:� dx, + :� dX2) 
aG 

= --a dx, 1\ dX2 ; XI 
and, similarly, 
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82 -----.�----�----_r----_.�---

Figure 4-1 

We emerge with the formula 

where 

Check that at any point x = (x) ' X2' G(x) ,  X2» in S, the vector �(x) is nor­
mal to the surface S; that is, �(x) .L TiS). We can rewrite the integraI in a 
form you probably Iearned in second-year calculus. Let � = �/I � I be the 
unit normai vector, Iet F = (/)'/2'/3), and define a smooth 2-form dA = 
I � I dx) /\ dx2• Then 

f ro = f (F - �) dA. 
S R' 

The form dA is usually called the area farm of the surface S, a title you 
may motivate for yourself with a Iittle exercise. First show that if AS is a small 
rectangle in R3 and AS' is its projection onto the X)X2 pIane, then 

Area (AS) = (sec e) - area (AS'), 
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where () is the angle between the normai to AS and the X3 axis. [First slide 
AS on its pIane unti l one edge is parallei to the intersection of this pIane with 
the X1X2 pIane ; then the formula is easy. Now show that for our surface 

I� I = Il + (aG )2 + (aG )2 
'\j aX 1 aX2 

equais the secant of the angle () between the normai vector to S and the X3 
axis. Finally, note that the area of AS' is the integraI of dX1 A dX2 over AS'.] 
(See Figure 4-2.) 

Figure 4-2 

EXERCIS ES 

1. Let Z be a finite set of points in X, considered as a O-manifold. Fix an 
orientation of Z, an assignment of orientation numbers a(z) = ± l to 
each z E Z. Let f be any function on X, considered as a O-form, and 
check that 

f f = � a(z) ·f(z). 
Z z E Z  

2. Let X be an oriented k-dimensionai manifold with boundary, and CI) a 
compactly supported k-form on X. Recall that - X designates the ori­
ented manifold obtained simply by reversing the orientation on X. 
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Check that 
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f co = -f co. -x x 

3. Let c :  [a, b] ---+ X be a srnooth curve, and let c(a) = p, c(b) = q. Show 
that if co is the differential of a function on X, co = dI, then 

s: c*co = f(q) - f(p). 

4. Let c :  [a, b] ---+ X be a srnooth curve, and let f :  [a l >  bd ---+ [a, b] be a 
srnooth rnap with f(al) = a andf(bl) = b. Show that the integrals 

fb fb
l 

c*co and (c o f)*co a a, 

are the sarne (i.e., f c co is independent of orientation-preserving re­
pararnetrization of c). 

*5. A c/osed curve on a rnanifold X is a srnooth rnap )' :  SI ---+ X. If co is a 
l -forrn on X, define the fine integrai of co around )' by 

,( co = f )'*(co). Ty Si 

For the case X = R\ write f co explicitly in terrns of the coordinate y 
expressions of )' and co. 

6. Let h: RI ---+ SI be h(t) = (cos t, sin t). Show that if co is any l -forrn on 
SI , then 

f co = f
2
" h*co. s' o 

*7. Suppose that the l-forrn co on X is the differential of a function, co = df 
Prove that f co = O for alI closed curves )' on X. [HINT: Exercises 3 and 

y 
5.] 

*8. Define a l -forrn co on the punctured pIane R2 - {O} by 

co(x, y) = C27 y2) dx + C2 � y2) dy. 

(a) Calculate f c co for any circle C of radius r around the origino 
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(b) Prove that in the haIf-piane (x > O}, CI) is the differentiai of a func­
tion. [HINT: Try arctan (y/x) as a random possibiIity.] 

(c) Why isn't CI) the differentiai of a function globally on R2 - {O} ? 

*9. Prove that a l -form CI) on SI is the differentiai of a function if and onIy if f CI) = O. [HINT: "OnIy if" folIows from Exercise 6. Now Iet h be as in 
s' 

Exercise 5, and define a function g on R by 

g(t) = ( h*CI). 
Show that if f CI) = O, then g(t + 21l) = gel). Therefore g =10 h for 

s' 

some function I on SI . Check di = CI).] 

*10. Let v be any l -form on SI with nonzero integraI. Prove that if CI) is any 
other l -form, then there exists a constant c such that CI) - cv = df for 
some function I on SI . 

11. Suppose that CI) is a I -form on the connected manifoid X, with the prop­
erty that f CI) = O for alI ciosed �urves y. Then if p,q E X, define r CI) to 

y p 

be s: c*CI) for a curve c : [O, l ] ---> X with c(O) = p, c(l) = q. Show that 
this is welI defined (Le., independent of the choice of c). [HINT : You can 
paste any two such curves together to form a cIosed curve, using a trick 
first to make the curves constant in neighborhoods of zero and one. 
For this Iast bit, use Exercise 4.] 

*12. Prove that any I -form CI) on X with the property f CI) = O for alI cIosed 
y 

curves y is the differentiai of a function, CI) = di [RINT : Show that the 
connected case suffices. Now pick p E X and define I(x) = r CI). Check 

p 
that di = CI) by calcuiating/ in a coordinate system on a neighborhood 
U of x. Note that you can work entireIy in U by picking some p' E U, 

for I(x) = I(p') + f:, CI).] 
13. Let S be an oriented two-manifoid in R3, and Iet �(x) = (n l (x), n2(x), 

n3{x)) be the outward unit normai to S at x. (See Exercise 1 9  of Chapter 
3, Section 2 for definition.) Define a 2-form dA on S by 

(Rere each dx( is restricted to S.) Show that when S is the graph of a 
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function F: R2 ----> R, with orientation induced from RZ, then this dA is 
the same as that defined in the text. 

14. Let 

be an arbitrary 2-form in R 3 • Check that the restriction of O) to S is the 
form (F . �) dA, where 

[HINT: Check directly that if u, v E Tx(S) C R 3 , then O)(X)(U, v) equals 
one half the determinant of the matrix 

If F(x) E T x(S), this determinant is zero, so only the normal component 
of F(x) contributes.] 

§5 Exterior Derivative 

Forms cannot only be integrated, they can also be differentiated. 
We have aIready seen how to do this in generaI for O-forms, obtaining from 
a smooth function f the I -form di In EucIidean space, it is obvious how 
to continue. If O) = I: al dXI is a smooth p-form on an open subset of Rk, 
we simply differentiate its coefficient functions. Define the exterior derivative 
of O) to be the ( p  + l )  form dO) = I: dal 1\ dxl. The following theorem lists 
the most important properties of this definitio'n. 

Theorem. The exterior differentiation operator d, defined on smooth forms 
on the open U c Rk (or Hk), possesses the following three properties : 

l .  Linearity : 

2. The Multiplication Law : 

d(O) 1\ O) = (dO) 1\ O + (- I )PO) 1\ dO 

if O) is a p-formo 
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3. The Cocycle Condition : 
d(dO) = O. 

Furthermore, this is the only operator that exhibits these properties and 
agrees with the previous definition of djfor smooth functionsf 

Proof Part (a) is obvious ; parts (b) and (c) are computational. We will 
write out (c), leaving (b) as an exercise. If O) = L[ a[ dXI> then 

Then 

Using the fact that 

but 

we cancel terms in the sum two by two, showing d(dO) = O. 
Uniqueness follows easily. Suppose that D were another operator satis­

fying (a), (b), (c), and such that Dj = dj for fu
�

ctions. Then D (dx[) = O. 
For by (b), 

but 
D(dxi,) = D(DxiJ = O. 

Now let O) = LI a[dx[ be any p-formo Then by (a) and (b), 

Since D (dx[) = O and D(a[) = dal> DO) = dO). Q.E.D. 

Corollary. Suppose that g:  V ---> U is a diffeomorphism of open sets of Rk 
(or Hk). Then for every form O) on U, d(g*O) = g*(dO) . 

Proof Just check that the operator D = (g- l)* o d o g* satisfies (a), (b), and 
(c). You proved the corollary earlier for functions, so D and d agree for func­
tions on U. Consequently, D = d, or d o g* = g* o d. Q.E.D. 
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Just as the natural transformation law 

fv g*w = fu w 

allowed us to define integration on manifolds, so the relation d o  g* = g* o d 
permits us to differentiate forms on manifolds. Suppose that w is a p-form on 
x, a manifold with boundary. We define its exterior derivative dw locally. If 
cp :  U ----> X is any local parametrization, define dw on the image set cpC U) to 
be (cp- !)* d(cp*w). If ", :  V ----> X is another parametrization with overlapping 
image, then on the overlap we know 

For set g = cp- ! o "'. By the corollary, 

g* d(cp*w) = d(g*cp*w) = d(",*w), 

so 

As every point of X lies inside the image of some parametrization, dw is a 
well defined (p + l )  form globally defined on X. We leave you to translate the 
properties of the exterior derivative on Euclidean space into the generai se t­
ting, proving the next theorem. 

Theorem. The exterior differentiation operator defined for forms on arbi­
trary manifolds with boundary has the following properties : 

I .  d(w! + (2) = dw! + dW2' 
2. d(w A e) = (dw) A e + ( - l )Pw A de, where w is a p-formo 
3. d (dw) = O. 

4. lf I is a function, di agrees with the earlier definition. 
5. If g: Y -> X is a diffeomorphism, then d o  g* = g* o d. 

The two Euclidean operations, J and d, extend to manifolds for analogous 
reasons : both transform naturally under coordinate change. However, there 
is actually a great difference in the depth of the two transformation properties. 
The Change of Variables Theorem for integration (which we invoked in the 
last section but did not prove) is rather subtle, requiring a precise analysis of 
the way Euclidean volume is distorted by diffeomorphisms. In contrast, the 
fact that d commutes with pullback, d o g* = g* o d, is a simple consequence 
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of the definition. Moreover, g need not be a diffeomorphism ; the formula is 
valid for arbitrary maps. 

Theorem. Let g :  Y ----> X be any smooth map of manifolds with boundary. 
Then for every form m on X, d(g*m) = g*(dm). 

Proof When m is a O-form, you proved the formula at the end of Section 3. 
It foIlows al so when m = dfis the differential of a O-form, for dm = O implies 
g*(dm) = O, and 

d(g*m) = d(g*df) = d (dg*f) = O. 

Furthermore, part (2) of the previous theorem shows that if this theorem holds 
for some m and O, then it is also valid for m 1\ O. But 10caIly, every form on X 
is expressible as a wedge product of a O-form and a number of differentials of 
O-forms, since in Euclidean space every form is 1: al dxl. Because the theorem 
is local (the two forms d(g*m) and g*(dm) are equal if they are equal in a 
neighborhood of every point), we are done. Q.E.D. 

Before c10sing this section, let us caIculate completely the operator d in 
R3. In effect, it is probably quite weIl known to you, although expressed in 
terms of vector fields rather than forms. 

O-forms. If f is a function on R3, then 

where 
( al al al ) ---' (gl ' g2, g3) = aXI ' aX2

' aX3 = grad (f), 

the gradient vector field of f 

l-forms. Let 

Then 
dm = dii 1\ dx, + dl2 1\ dX2 + dl3 1\ dX3 

= gl dx2 1\dx3 + g2 dX3 1\dxI + g3 dx, l\dx2' 
where 



178 CHAPTER 4 INTEGRATION ON MANIFOLDS 

If we define F and G to be the vector fields (/1.12.13) and (gl > g2, g3), then 
G = curi F. 

2-forms. For 

m = /1 dX2 1\ dX3 + /2 dx3 1\ dXI + /3 dXI 1\ dX2' 

dm = (ali + al2 + a/3 ) dx 1\ dx 1\ dx aXI aX2 aX3 1 2 3 

= (div F) dXI 1\ dX2 1\ dx3 . 

3-forms. d(any 3-form) = o. (Why ?) 

So the classica I operators ofvector calculus in  3-space-the gradient, curi, 
and divergence-are really the d operator in vector field formo Show that the 
cocycIe condition d2 = O on R3 is equivalent to the two famous formulas 
curi (gradI) = O and div (curi F) = O. 

EXERCISES 

1. Calculate the exterior derivatives of the following forms in  R3 : 
(a) Z2 dx 1\ dy + (Z2 + 2y) dx 1\ dz. 
(b) 1 3x dx + y2 dy + xyz dz. 
(c) I dg, where I and g are functions. 
(d) (x + 2y3)(dz 1\ dx + tdy 1\ dx). 

2. Show that the vector field 

( -y X ) 
X2 + y2 ' X2 + y2 

has curi zero, but that it cannot be written as the gradient of any func­
tion. 

§6 Cohomology with Formst 

A p-form m on X is c/osed if dm = O and exact if m = dO for 
some (p - I )  form O on X. Exact forms are ali c1osed, since d2 = O, but it 
may not be true that c10sed forms are ali exact. In fact, whether or not cIosed 
forms on X are actually exact turns out to be a purely topological matter. 
You are probably familiar with this from calculus, aIthough perhaps expressed 

tThis section is not required reading for subsequent sections, but some later exercises 
do refer to it. 
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in vector field language. All gradient vector fields have curl zero, but the 
converse depends on the domain of definition, as the preceding Exercise 2 
shows. In the language of forms, Exercise 2 says that the l -form 

is closed but not exact. 
In this section we shall make a rudimentary study of the closed versus 

exact distinction. The subject is quite pretty, so, as in the winding number 
section, we will leave most of the verifications for you. Hopefully, this will 
compensate for the dearth of interesting exercises in the last few sections. 

In order to measure the failure of the implication closed ==- exact, we 
define an equivalence relation on the vector space of closed p-forms on X. 
Two closed p-forms co and co' are called cohomologous, abbreviated co '" co', 
iftheir difference is exact : co - co' = dO. (Check that this is indeed an equiva­
lence relation.) The set of equivalence classes is denoted HP(X), the pth 
DeRham cohomology group of X. HP(X) is more than a set ; it has a natural 
real vector space structure. For if COI '" CO'1 and C02 '" co�, then CO I + C02 '" 
CO'1 + co� ; al so, if c E R, then cco l '" CCO'I .  Thus the vector space operations 
on closed p-forms naturally define addition and scalar multiplication of 
cohomology classes. The O cohomology class in the vector space HP(X) is just 
the collection of exact forms, since co + dO '" co always. 

Suppose that f: X -> Y is a smooth map, so thatf* pulls p-forms on Y 
back to p-forms on X. Use the relationf* o d = d o  f* to check thatf* pulls 
back closed forms to closed forms and exact forms to exact forms. In fact, if 
co '" co', then f *co '" f *co'. Thus f* pulls cohomology classes on Y back to 
cohomology classes on X; that is, f* defines a mappingf# : HP( Y) -> HP(X). 
Sincef* is linear, you can easily check that f# is linear. (Remember thatf# 
pulls back: i .e., whenf: X -> Y, then f#:  HP( Y) -> HP(X).) 

The numbered statements in the following discussion are for you to prove. 

f g 
1. lf X ---+ Y ---+ Z, then (g o f)# = f# o g#. 

In some simple cases, we can easily compute HP(X). For ex ampie, 
HP(X) = O for ali p >  dim X. The next easiest case is 

2. The dimension of HO( X) equals the number of connected components in 
X. [HINT : There are no exact zero forms. Show that a zero form-that 
is, a function-is closed if and only if it is constant on each component 
of X.] 

In obtaining information about other cohomology groups, we shall 
define an operator P on forms. J ust like the operators d and f, P is first defined 
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in Euclidean space and then extended to manifolds by local parametrizations. 
And as with the earlier operators, the reason P may be so extended is that it 
transform,s properly under diffeomorphisms. 

Suppose that U is an open set in Rk and O) is a p-form on R x U. Then O) 
may be uniquely expressed as a sum 

O) = 'LJit, x) dt A dx/ + L git, x) dxJ• ( 1 )  
/ J 

Here t is the standard coordinate function on R, Xl ,  • • •  , xk are the standard 
coordinate functions on Rk, I and J are increasing index sequences, respec­
tively of length p - l and p. The operator P transforms O) into a p - l form 
PO) on R X U, defined by 

PO)(t, x) = � [( Iis, x) dsJ dx/. 

Notice that PO) does not involve a dt term. 
Now let ifJ :  V -> U be a diffeomorphism of open subsets of Rk, and let 

<J) : R x V -> R x U be the diffeomorphism <J) = identity X ifJ. Prove the 
essential transformation property 

3. <J)* PO) = P<J)*O). [HINT: This is not difficult if you avoid writing every­
thing in  coordinates. Just note that <J)* dt = dt and that <J)* converts each 
ofthe two sums in  the expression ( l )  for O) into sums ofthe same type.] 

Now copy the arguments used to put d and f on manifolds to prove 

4. There exists a unique operator P, defined for alI manifolds X, that 
transforms p-forms on R x X into p - l forms on R X X and that 
satisfies the folIowing two requirements : 

( l )  If ifJ :  X -> Y is a diffeomorphism, and <J) = identity X ifJ, then 
<J)* o P = P o <J)*. 

(2) If X is an open subset of Rk, P is as defined above. 

The main attraction of this operator is the folIowing marvelous formula. 
(No doubt it appears anything but marvelous at first, but wait!) 

5. Let n : R X X -> X be the usual projection operator and 
i. : X -> R X X be any embedding x -> (a, x). Then 

dPO) + PdO) = O) - n*i. *0). 

[HINT: Essentially this is a question of unraveling notation. For exam­
pie, if O) is expressed by the sum ( l ), then n*ia*O) = LJ gix, a) dxJ.] 
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The first important consequence of this formula is 

6. (Poincaré Lemma) The maps 

181 

are inverses of each other. In particular, HP(R x X) is isomorphic to 
HP(X). 
[HINT : n o ia = identity, so Exercise l implies r: o n# = identity. For 
n# o t:, interpret Exercise 5 for closed forms co.] 

Take X to be a single point, so HP(X) = O if p > O. Now the Poincaré 
lemma implies by induction : 

Corollary. HP(Rk) = O if k > O ;  that is, every closed p-form on Rk is exact 
ifp > O. 

A slight1y more subt1e consequence is 

7. If f, g : X -> Y are homotopic maps, then f# = g#. [HINT : Let 
H :  R X X -> Y be a smooth map such that H(a, x) = f(x) and 
H(b, x) = g(x). Then 

But it is clear from Exercise 6 that i! = if.] 

Now strengthen the corolIary to Exercise 6 by proving 

8. If X is contractible, then HP(X) = O for alI p > O. 

We conclude this section with one deeper result. 

Theorem. HP(Sk) is one dimensionaI for p = O and p = k. For aH other p, 
HP(Sk) = O (k > O). 

Here is an inductive approach to the theorem. Assume the theorem for 
Sk- I ,  and we shalI prove it for Sk. Let U1 be Sk minus the south pole, and let 
U2 be Sk minus the north pole. By stereographic projection, both U1 and 
U2 are diffeomorphic to Rk- I . Prove 

9. U I (ì U 2 is diffeomorphic to R X Sk- I .  [HINT : Stereographic projec­
tion shows that U1 (ì U2 is diffeomorphic to Rk- I - {O}.] 

We shall now apply a classical technique of algebraic topology, the 
"Mayer-Vietoris argument," to prove the folIowing key fact : 
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Proposition. For p >  l ,  the vector spaces HP(VI U V2) and HP- I (VI (ì V2) 
are isomorphic. 

Begin with a closed p-form ({) on V I U V 2 = Sk. Since U I lS contractible, 
Exercise 8 implies that the restriction of ({) to VI is exact ; thus ({) = difJ l on 
VI . Similarly, ({) = difJ2 on V2. Now, consider the p - l form v = ifJ l - ifJ2 
on VI (ì V2. Since difJl = difJ2 on VI (ì V2, V is closed. Thus we have a pro­
cedure for manufacturing closed p - l forms on VI (ì V2 out of closed p­
forms on VI U V2• 

This procedure is easily reversed. Find functions PI and P2 on Sk such that 
PI vanishes in a neighborhood of the north pole and P2 vanishes in a neigh­
borhood of the south pole, but PI + P2 = l everywhere. Now given a closed 
p - l form v on VI (ì V2, define the form ifJl on VI to be PIV. Although v 
itself may blow up at the north pole, PI  kills it off, so that ifJl is smoothly de­
fined on all of VI . Similarly, set ifJ2 = -P2V on V2. Note that ifJl - ifJ2 = v 
on VI (ì V2. Define a p-form ({) on VI U V2 by setting ({) = difJl on VI and 
({) = difJ2 on V2· Since difJ l - difJ2 = dv = O on VI (ì V 2' ({) is a well-defined 
smooth form on alI of V I U U 2, and it is certainly closed. 

lO. Show that these two procedures prove the proposition. (What happens 
for p = l ?) 

Now we are almost done. 

and by Exercise 9 and the Poincaré lemma, 

Thus 
if p >  l .  

Two items are missing. We must start the induction by proving dim HI (SI) 
is l ,  and we must supply the missing datum Hl (Sk) = O for k > l .  The latter 
is an easy consequence of Stokes theorem, so we delay its proof until Exercise 
l O, Section 7. And you will discover that you have already proved HI (SI) to 
be one dimensionai if you simply collect together Exercises 9 and lO of 
Section 4 and Exercise 2 of Section 5. 

§7 Stokes Theorem 

There is a remarkable relationship among the operators f and 
d on forms and the operation a which to each manifold with boundary as­
sociates its boundary (remarkable because a is a purely geometric operation 
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and d and f are purely analytic). In one dimension, the relationship is an­
nunciated by the fundamental theorems of caIcuIus, and in two and three 
dimensions it is the subject of the c1assical theorems of Green, Gauss, and 
Stokes. In generaI, suppose that X is any compact-oriented k-dimensional 
manifold with boundary, so ax is a k - I dimensionaI manifold with the 
boundary orientation. 

Tbe Generalized Stokes Theorem. If co is any smooth (k - I )  form on X, 
then 

f co = f dco. 
ax x 

Proo! Both sides of the equation are linear in co, so we may assume co to 
have compact support contained in the image of a Iocal parametrization 
h :  U -> X, U being an open subset of Rk or Hk. 

First, assume U is open in Rk ; i.e., h(U) does not intersect the boun­
dary. Then 

f co = O and f dco = f h*(dco) = f dv, 
ax x u u 

where v = h*co. Since v is a (k - l )  form in  k-space, we may write it as 

/'.. 
Here the dx{ means that the term dx{ is omitted from the product. Then 

and 

(2) 

The integraI over Rk is computed as usual by an iterated sequence of in­
tegrals over R 1 , which may be taken in any order (Fubini's theorem). Inte­
grate the ith term first with respect to x{ : 

Òf course, 
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is the function of XI ' . . .  , xI> . . . , Xk that assign to any (k - I )  tupie 

(bI , . . .  , bi' . . .  , bk) the number I:� g'(t) dt, where g(t) = [(b i o ' . . , t, . ; . , bk). 
Since v has compact support, g vanishes outside any sufficientIy large interval 
(-a, a) in R l . Therefore the Fundamentai Theorem of Calculus gives 

[� g'(t) dt = r. g'(t) dt = g(a) - g( -a) = ° - ° = O. 

Thus I x 
dw = 0, as desired. 

When U c H\ the preceding anaIysis works for every term of (2) ex­
cept the Iast. Since the boundary of Hk is the set where xk = 0, the Iast 
i ntegraI is 

Now compact support implies thatfk vanishes if Xk is outside some large in­
tervai (O, a), but although fk(Xh . . .  , Xk- h a) = O,fk(Xh " , , Xk- I > O) * O. 
Thus appIying the Fundamental Theorem of Calculus as above, we obtain 

Ix
dW = I - fk(XI ,  . . .  , Xk_ I , O) dxI . .  · dxk_ l .  

R.t-l 

On the other hand, 

I w - I v 
iiX 

-
iiH' • 

Since Xk = ° on aH\ dXk = ° on aHk as weII. Consequently, if i < k, the 
/'.. 

form (- I )i- Jfl dxl /\ . . .  /\ dx; /\ . . .  /\ dxk restricts to ° on aHk. So the 
restriction of v to aHk is (- I )k- If(xl ,  . . .  , Xk_ h O) dxI /\ ' " /\ dxk_ l ,  
whose integraI over aHk i s  therefore I w. 

iiX 
Now aHk is naturally diffeomorphic to Rk- I under the obvious map 

(Xh . . . , Xk- I ) --> (Xh . . .  , Xk- I ' O), but this diffeomorphism does not aI­
ways carry the usuai orientation of Rk- I to the boundary orientation of aHk. 
Let e l ,  . . .  , ek be the standard ordered basis for R\ so e l ,  . . . , ek- I  is the 
standard ordered basis for Rk- I . Since Hk is the upper haIf-space, the out­
ward unit normai to aHk is -ek = (O, . . . , 0, - I ). Thus in the boundary 
orientation of aH\ the sign of the ordered basis [e l ,  . . . , ek- d is defined to 
be the sign of the ordered basis [-eh eh ' . .  , ek- d in the standard orienta­
tion of Hk. The Iatter sign is easiIy seen to be ( - I  y, so the usual diffeomor­
phism Rk -> aHk alters orientation by this factor (- l )k. 
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The result is the formula 

f co = f (_l )k- 1fk(XI > . . .  , Xk_ I , O) dx 1  · · · dxk_ 1  ilX ilHk 
= ( - I )k f (- lt- 1fk(xl > ' " , Xk_ I , O) dx1 . . . dxk_ l • 

R .... 
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Since (- I )k( - I  )k- I = - I ,  it is exactly the formula we derived for f x dco. 
Q.E.D. 

The classical versions of Stokes theorem are i�cluded in the exercises, 
along with some typical applications. But, for us, the essential value of 
Stokes theorem is that it provides a fundamental link between analysis and 
topology. Tne final sections of the book are devoted to exploring this link. 

EXERCISES 

l. Show that Stokes theorem for a closed interval [a, bl in RI is just the 
Fundamental Theorem of Calculus. (See Exercise I ,  Section 4.) 

2. Prove the classical Green's formula in the piane : let W be a compact 
domain in  R2 with smooth boundary a w  = y. Prove 

3. Prove the Divergence Theorem : let W be a compact domai n in R3 with 
smooth boundary, and let F = (/1 '/2'/3) be a smooth vector field on 
W. Then 

f (div F) dx dy dz = f (� .F) dA. 
w ilW 

(Here � is the outward normal to a w. See Exercises 13 and 14 of Sec­
tion 4 for dA, and page 1 78 for div F.) 

4. Prove the classica I Stokes theorem : let S be a compact oriented two­
manifold in R3 with boundary, and let F = (/1 '/2'/3) be a smooth 
vector field in a neighborhood of S. Prove 

(Here � is the outward normal to S. For dA, see Exercises 1 3  and 14 
of Section 4,  and for curi F, see page 1 78.) 
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5. The Divergence Theorem has an interesting interpretation in  fluid dy­
namics. Let D be a compact domain in R3 with a smooth boundary 
S = aD. We assume that D is filled with an incompressible fluid whose 
density at x is p(x) and whose velocity is �(x). The quantity 

measures the amount of fluid flowing out of S at any fixed time. If x E 
D and B. is the ball of radius € about x, the "infinitesimal amount" of 
fluid being added to D at x at any fixed time is 

Show that (*) = div p�, and deduce from the Divergence Theorem that 
the amount offluid flowing out of D at any fixed time equals the amount 
being added. 

6. The Divergence Theorem is also useful in electrostatics. Let D be a 
compact region in  R 3 with a smooth boundary S. Assume O E Int (D). 
If an electric charge of magnitude q is placed at O, the resulting force 
field is q;jr3, where ;(x) is the vector to a point x from O and r (x) is its 
magnitude. Show that the amount of charge q can be determined from 
the force on the boundary by proving Gauss's law : 

L f ·�  dA = 4nq. 

[HINT : Apply the Divergence Theorem to a region consisting of D 
minus a small ball around the origin.] 

*7. Let X be compact and boundaryless, and let (J) be an exact k-form on 

X, where k = dim X. Prove that f x (J) = O. [HINT : Apply Stokes theo­

remo Remember that X is a manifold with boundary, even though ax 
is empty.] 

*8. Suppose that X = a w, W is compact, andf: X --> Y is a smooth map. 
Let (J) be a closed k-form on Y, where k = dim X. Prove that iffextends 

to ali of W, then f x f*(J) = O. 

*9. Suppose thatfoJI : X -> Y are homotopic maps and that the compact, 
boundaryless manifold X has dimension k. Prove that for ali closed k-
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forms CO on Y, 

[HINT : Previous exercise.] 

f x ftco = f xfrco. 
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lO. Show that if X is a simply connected manifold, then f co = O for alI 
y 

c10sed l -forms co on X and alI c10sed curves y in  X. [HINT : Previous 
exercise.] 

11. Prove that if X is simply connected, then alI c10sed l -forms co on X are 
exact. (See Exercise 1 1 ,  Section 4.) 

12. Conclude from Exercise I l that Hl (Sk) = O if k > 1 .  

13. Suppose that Zo and ZI are compact, cobordant, p-dimensionaI sub­
manifolds of X. Prove that 

f co - f co 
ZI Zz 

for every c10sed p-form co on X. 

14. (a) Suppose that COI and C02 are cohomologous p-forms on X, and Z 
is a compact oriented p-dimensionaI submanifold. Prove that 

(b) Conclude that integration over Z defines a map of the cohomology 
group HP(X) into R, which we denote by 

Check that f z is a linear functional on HP(X). 

(c) Suppose that Z bounds ; specificalIy, assume that Z is the boundary 
of some compact oriented p + 1 dimensionaI submanifold-with-

boundary in X. Show that f z is zero on HP(X). 

(d) Show that if the two compact oriented manifolds ZI and Z2 in X 

are cobordant, then the two linear functionals f and f are equa!. 
ZI z, 
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§8 I ntegration a n d  Mappings 

Our primary application of Stokes theorem is  the following 
theorem, which relates the analytic operation of integration to the topological 
behavior of mappings. 

Degree Formula. Let f: X -> Y be an arbitrary smooth map of two com­
pact, oriented manifolds of dimension k, and let co be a k-form on Y. Then 

f x f*co = deg (I) f y co. 

Thus the mapping f alters the integrai of every form by an integer multi­
ple, that integer being the purely topological invariant deg (I). The theorem 
has numerous applications, one simply being the argument principle de­
scribed in  the chapter introduction. Let 

be a complex polynomial, and n a region in the piane whose smooth bound­
ary contains no zeros of p. We wish to prove that the number of zeros of p 
inside n, counting multiplicities, is given by the integrai 

-21 f d arg p(z). 
n an 

We had better interpret the meaning of the integraI. Recall that each non­
zero complex number w may be written as ré9, where r is the norm of w and 
e is, by definition, its argument. But e = arg(w) is not really a well-defined 
function ; since é9 = �(9+2,,) , the values e + 2nn all qualify to be arg (w), 
where n is any integer. Happily, the ambiguity can be dispelled by passing to 
the exterior derivative. For in a suitable neighborhood of any point, we can 
always choose values for arg (w) at every point so as to obtain a smooth func­
tion of w; let's call it argo (w). Then every other smooth function cf> ( w) in that 
neighborhood which satisfies the necessary formula w = I w I �q,(w) equals 
argo (w) + 2nn for some integer n. Since cf> and argo differ by a constant, 
dcf> = d argo. This smooth I -form, defined on C - {O}, is what we call 
d argo Although the notation suggests that it is the differentiai of a function, 
we see that this assumption is misleading ; only locally do suitable functions 
exist. 

In" the argument principal, the integrand is the l-form 

z -> d arg p(z) = p*(d arg)" 
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This integrand is defined and smooth on the complex pIane minus the zeros 
of p. Since we have already proven that the zeros of p in n are counted by the 
degree of the map f: an -----> SI , where 

f(z) - p(z) = é arg p(z) - I p(z) I ' 

we must identify the integraI of d arg p(z) with 2n deg (f). Apply the degree 
formula to the restriction of the I -form d arg to SI . If 

w = f(z) = el arg p(z) ,  

then arg (w) = arg p(z). Since arg p(z) is actually a smooth function, at least 
locally, we get 

d arg p(z) = d(f* arg (w)] = f* d arg (w). 

Thus 

f d arg p(z) = deg (f) f d arg (w) . 
.IO s' 

Calculating the integraI over SI is absolutely trivial. Obviously, removal of a 
single point, say w = l ,  from SI wiII not change the integraI. But we may 
parametrize SI - { l } by e -----> é9, e E (O, 2n). Arg (w) is a smooth function 
on SI - { l }  that pulls back to the identity e -----> e on (O, 2n). Therefore 

and we are done. 

f d arg (w) = f21r de = 2n, 
s' o 

At the heart of the degree formula lies the following theorem, which 
should remind you strongly of a fundamental property of degree. 

Theorem. If X = a w  and f: X -----> Y extends smoothly to alI of W, then 

f xf*co = ° for every k-form co on Y. (Here X, Y, W are compact and 

oriented and k = dim X = dim Y.) 

Prop! Let F :  W -----> Y be an extension of! Since F =fon X, 

f f*co = f F*co = f F* dco. 
x ùw W 

But co is a k-form on a k-dimensional manifold, so dco = O. (Ali k + l forms 
on k-dimensional manifolds are automaticalIy O.) Q.E.D. 
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Corollary. If 10'/1 : X -> Y are homotopic maps of compact oriented 
k-dimensional manifolds, then for every k-form co on Y 

Proo! Let F :  I x X -> Y be a homotopy. Now 

so 

o = f (aF)*co = f (aF)*co - f (aF)*co iJ(IxX) XI x, 

(O according to the theorem). But when we identify Xo and XI with X, aF 
becomes /o on Xo and/l on XI ' Q.E.D. 

A local version of the degree formula around regular values is very easily 
established, and its proof shows most concretely the reason why the factor 
deg (I) appears. 

Lemma. Let y be a regular value of the map I: X -> Y between oriented 
k-dimensional manifolds. Then there exists a neighborhood U of y such that 
the degree formula 

f s I*co = deg (f) f y co 

is valid for every k-form co with support in  U. 

Proo! Because I is a local diffeomorphism at each point in  the preimage 
I- I (y), y has a neighborhood U such that/- I ( U) consists of disjoint open sets 
VI ' . . .  , VN, and I: VI -> U is a diffeomorphism for each i = I ,  . . . , N 
(Exercise 7, Chapter I ,  Section 4). If co has support in U, then /*co has sup­
port in/- I (U); thus 

f X I*co = j� f VI 
I*co. 

But since I: Vj -> U is a diffeomorphism, we know that 

f I*co = (1/ f co, 
VI U 

-the sign (1i being ± I ,  depending on whether I: Vj -> U preserves or reverses 
orientation. Now, by definition, deg (I) = 2: (1i' so we are done. Q.E.D. 
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Finally, we prove the degree formula in generaI. Choose a regular value 
y for I: X -> Y and a neighborhood U of y as in the lemma. By the Isotopy 
Lemma of Chapter 3, Section 6, for every point Z E Y we can find a diffeo­
morphism h :  Y -> Y that is isotopic to the identity and that carries y to 
z. Thus the collection of ali open sets h( U), where h :  Y -> Y is a diffeomor­
phism isotopic to the identity, covers Y. By compactness, we can find finitely 
many maps hl , . . .  , hn such that Y = hl (U) U . . . u hn(U). Using a parti­
tion of unity, we can write any form O) as a sum of forms, each having 
support in one of the sets h;( U) ; therefore, since both sides of the degree 
formula 

f x 1*0) = deg (f) f y O) 

are linear in 0), it suffices to prove the formula for forms supported in some 
h(U). 

So assume that O) is a form supported in h(U). Since h '" identity, then 
h 01 '" f Thus the corollary above implies 

f x 1*0) = f x (h 0/)*0) = f x 1* h*O). 

As h*O) is supported in U, the lemma implies 

f xl*(h*O) = deg (f) f y h*O). 

Finally, the diffeomorphism h is orientation preserving ; for h '" identity 
implies deg (h) = + l .  Thus the change of variables property gives 

f y 
h*O) = f y 0), 

and 

f x 1*0) = deg (f) f y 0), 

as claimed. 

EXERCISES 

1. Check that the l -form d arg in R2 - {O} is just the form 

-y dx + Y d X2 + y2 X2 + y2 Y 
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discussed in earlier exercises. [HINT : e = arctan (ylx).] (This form is 
also often denoted de.) In particular, you have already shown that 
d arg is c10sed but not exact. 

2. Let y be a smooth c10sed curve in  R2 - {O} and w any c10sed l -form 
on R2 - {O}. Prove that 

,J: w = W(y, O) f w, 1,. SI 

where W(y, O) is the winding number of y with respect to the origino 
W(y, O) is defined just like W2(y, O), but using degree rather than 
degree mod 2; that is, W(y, O) = deg (yll y I). In particular, conclude that 

W(y, O) = 2� f y d argo 

3. We can easily define complex valuedforms on X. The forms we have 
used heretofore are real forms. Create imaginary p-forms by multiplying 
any real form by i = �=T. Then complex forms are sums Wl + iW2' 
where Wl and W2 are rea!. Wedge product extends in  the obvious way, 
and d and f are defined to commute with multiplication by i :  

Stokes theorem is valid for complex forms, for it is valid for their real 
and imaginary parts. We can now use our apparatus to prove a funda­
mental theorem in complex variable theory : the Cauchy Integrai For­
mula. 
(a) Let z be the standard complex coordinate function on C = R2. 

Check that dz = dx + i dy. 
(b) Let f(z) be a complex valued 'function on an open subset U of C. 

Prove that the l -form f(z) dz is c10sed if and only iff(z) =f(x, y) 
satisfies the Cauchy-Riemann equation 

af _ . af - - 1 - '  ay ax 

Express f in terms of its real and imaginary parts f = fl + if2' and 
show that the Cauchy-Riemann equation is actually two real equa­
tions. If fez) dz is closed, the function f is called holomorphic in U. 

(c) Show that the product of two holomorphic functions is holomor­
phic. 

(d) Check that the complex coordinate function z is holomorphic. Con­
clude that every complex polynomial is holomorphic. 
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(e) Suppose that f is holomorphic in U and Yl '  Y 2  are two homotopic 
closed curves in U. Prove that 

(f(z) dz = (f(z) dz. 

[HINT : Use Exercise 9, Section 7.] 
(f) If f is holomorphic in a simply connected region U, show that 

f fez) dz = O for every closed curve Y in U. [HINT : Part (e).] 
y 

(g) Prove that the functionf(z) = l /z is holomorphic in the punctured 
piane C - {O}. Similarly, l /(z - a) is holomorphic in C - {a}. 

(h) Let eT be a circle of radius r around the point a E C. Prove that 

by direct calculation. 

I _1_ dz = 2ni, z - a  c, 

(i) Suppose thatf(z) is a holomorphic function in U and eT is the circle 
of radius r around a E U. Prove that 

I fez) dz = 2ni ·f(a). z - a  c, 

[HINT : By part (e), this do es not depend on r. Note that 
If(z) -f(a) I < fT on e" where fT ---> o as r ---> O. So let r ---> o 

and use a simple continuity argument.] 
(j) Prove the eauchy Integrai Formula: If f is holomorphic in U and 

Y is a closed curve in U not passing through a E U, then 

_1 . f fez) dz = W(y a)·f(a). 
2m z - a ' 

y 

[HINT: Use part (i) and Exercise 2.] 

4. Construct a k-form on Sk with nonzero integraI. [HINT: Construct a 
compactly supported k-form in Rk with nonzero integrai, and project 
stereographicaIly. ] 

5. (a) Prove that a closed k-form Cù on Sk is exact if and only if f Cù = O. 
S' 

[HINT: dim Hk(Sk) = l .  Now use previous exercise.] 

(b) Conclude that the linear map f : Hk(Sk) ---> R is an isomorphism. s' 
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6. Prove that a compact1y supported k-form O) on Rk is the exterior deriva­

tive of a compact1y supported k - l form if and only if f O) = O. 
R' 

[HINT : Use stereographic projection to carry O) to a form 0)' on Sk. 
By Exercise 5, 0)' = dv. Now dv is zero in a contractible neighborhood 
V of the north pole N. Use this to find a k - 2 form Il on Sk such that 
v = dll near N. Then v - dll is zero near N, so it pulls back to a com­
pact1y supported form on Rk.] 

7. Show that on any compact oriented k-dimensional manifold X, the 

linear map f x : Hk(X) ---+ R is an isomorphism. In particular, show 

dim Hk(X) = l .  [HINT : Let V be al) open set diffeomorphic to R\ and 

let O) be a k-form compact1y supported in V with f x O) = l .  Use Exercise 

6 to show that every compact1y supported form in V is cohomologous to 
a scalar multiple of 0). Now choose open sets VI '  . . . , VN covering X, 
each of which is deformable into V by a smooth isotopy. Use Exercise 7 
of Section 6 and a partition of unity to show that any k-form e on X is 
cohomologous to cO) for some c E R. Indentify c.] 

8. Letf: X ---> Y be a smooth map of compact oriented k-manifolds. Con­
sider the induced map on the top cohomology groups, f# : Hk( Y) ---> 
Hk(X). Integration provides canonical isomorphisms of both Hk( Y) and 
Hk(X) with R, so under these isomorphisms the linear mapf# must cor­
respond to multiplication by some scalar. Prove that this scalar is the 
degree of f In other words, the following square commutes : 

f# 
Hk(Y)----_> Hk(X) 

Iy [ [ Ix 
R 

multiplication by > 
R 

deg (f) 

§9 The G a uss- Bon net Theorem 

We begin this section with a discussion of volume. Suppose that 
X is a compact oriented k-dimensional manifold in RN. For each point 
x E X, let 'l:Ix(x) be the volume elemfnt on Tx(X), the alternating k-tensor 
that has value l /k !  on each positively oriented orthonormal basis for Tx(X). 
(See Exercise l O, Section2.) It is not hard to show that the k-form Vx on X is 
smooth ; it is called the volumeform of X. For example, the volume form on 
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Rk is just dx. A · · ·  A dxk. The ungraceful l /k !  is necessitated by the way we 
normalized the definition of wedge product. (Compare with the footnote on 

page 1 56). The integrai f x 'l:I x is defined to be the volume of X. 
The volume form is valuable because it provides a means of integrating 

functions. If g is a function on X, then g'l:l x is a k-form on X, thus we can 

define f g to be f g'l:lx· (When Xis R\ 'l:Ix = dx. A . . . A dXk> so that f g x x � 
is the usual integraI.) 

Of course, you realize that the volume form is geometrical, not topolo­
gical ; it depends strongly on the precise manner in which the manifold sits 
inside Euclidean space. Consequently, integration offunctions is not a natural 
topological operation ; it does not transform properly under diffeomorphism. 

(For most diffeomorphisms h :  Y -> X, that is, f 
y 
h*g * f x g.) 

The reason that integration of functions transforms improperly, as we 
explained in Section 4, is that diffeomorphisms distort volume. We can 
quantitatively measure the distortion with the aid of volume forms. In fact, 
if I: X -> Y is any smooth map of two k-dimensional manifolds with bound­
ary, the pullback 1*'l:Iy is a k-form on X. At every point x E X, 'l:Ix(x) is a 
basis for Ak[TAX)*], so (f*'l:Iy)(x) must be a scalar multiple of 'l:Ix(x). This 
scalar is called the lacobian of I at x and is denoted l f(x). For motivation, 
note that the tensor 'l:I X<x) assigns to the k-tuple (v . ,  . . .  , vk) plus or minus 
the volume of the parallelopiped it spans in the vector space Tx(X) , multiplied 
by that awkward factor l /k !  (Compare with Exercise I l , Section 2.). (f*'l:Iy)(x) 
assigns ± the volume of the parallelopiped spanned by dlx(v.), . . .  , dlx(vk) 
in  Tf(x)( Y), multiplied by the same factor. Thus the magnitude of IAx) is the 
factor by which dix expands or contracts volume ; its sign reflects whether dix 
preserves or reverses orientation. In this sense, lf measures everywhere the in­
finitesimal change of volume and orientation effected by f 

We apply these generalities to study the geometry of hypersurfaces, k­
dimensionai submanifolds ofRk+ l . Now, the hypersurface Xis oriented ifand 
only if we can smoothly choose between the two unit normal vectors to X at 
every point (Exercise 1 8, Section 2, Chapter 3). If, in particular, X is a compact 
hypersurface, we know from the Jordan-Brouwer Separation Theorem that 
X is orientable as the boundary of its "inside" ; so we can just choose �(x) as 
the outward pointing normal. 

The map g :  X -> S\ defined by g(x) = �(x), is called the Gauss map of 
the oriented hypersurface X, and its Jacobian 19(x) = K(X) is called the 
curvature of X at x. For example, if X is a k-sphere of radius r, then K(X) = 
I/rk everywhere (Exercise 6.) As the radius increases, the curvature decreases, 
for large spheres are flatter than small ones. Of course, when X = Rk, then 
K = 0, since g is constant. 
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Figure 4-3 

Thus the magnitude of ,,(x), in some sense, measures how curved X is at x; 
the more curved the space, the faster the normai vector turns. For surfaces, 
the sign of ,,(x), indicating whether or not the Gauss map is disorienting, 
serves to distinguish between Iocai convex appearanee and loeal saddlelike 
appearanee : in part (a) of Figure 4-3, the Gauss map preserves orientation, 
while in part (b) it reverses orientation. 

The curvature is a strictly geometrie charaeteristic of spaees ; it obviously 
is not preserved by topological transformations. But one of the loveliest 
theorems in mathematies implies that the globai integraI of the curvature on 
compact, even-dimensionai hypersurfaces is a topoiogicai invariant. Thus no 
matter how we kick, twist, or stretch the space, alI the local changes in cur-

vature must exactly eaneel. Moreover, sinee f x " is a global topoiogicai in­

variant of X, you will probabIy not be shocked to learn that it is expressible 
in terms of (what else ?) the Euler eharacteristic. 

Tbe Gauss-Bonnet Tbeorem. If X is a compact, even-dimensional hyper­
surfaee in  Rk+ l , then 

where X(X) is the Euler characteristic of X and the constant Yk is the volume 
of the uni t k-sphere Sk. 

Of course, when X is odd dimensionaI, the formula is false, sinee the 
Euler eharacteristic is automaticalIy zero. 

Th� first part of the proof is an application of the degree formula to con­
vert the integraI into a topological expression. 

f ,, =  f Jg'llx = f g*'lIs' = deg (g)f vs' = deg (g) · Yk' x x X s' 
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So, in order to prove Gauss-Bonnet, we must show that the degree of the 
Gauss map equals one-half the Euler characteristic of X: deg (g) = !-x(X). 
To do so, we shaII use the Poincaré-Hopf theorem. 

Choose a unit vector a E Sk such that both a and -a are regular values 
of g. (Why can we do so ?) Let � be the vector field on X whose value at a 
point x is the projection of the vector -a onto T xC X) : 

�(x) = (-a) - [-a. �(x)]�(x) = [a ·g(x)]g(x) - a. 

(See Figure 4-4.) A point z E X is a zero of � if  and only if g(z) is a multiple 
of a ;  that is, g(z) = ± a. Since a and -a are regular values of g, and X is 

n(x) 

k6-
v (x) 

Figure 4-4 

compact, � has only finitely many zeros. Let us de note the translation map 
y -> y - a in Rk+ l by T, so we can write the mapping � : X -> Rk+ l as 
� = T o  [a ·g]g. 

Lemma. If g(z) = a, then d�z = dTa o dgz ; and if g(z) = -a, then 
d�z = -;-dTa o dgz. 

Proo! CaIcuiate the derivative at z of the map f: X -> Rk+ l defined by 
f(x) = [a ·g(x)]g(x) : if w E Tz(X), then the vector dfzCw) E Rk+ l is 

df.(w) = [a · g(z)] dg.(w) + [a ·dg.(w)]g(z) (3) 

[To check this, write w as the tangent to a curve cCt), so dfz(w) is the tangent 
to the curve f(c(t» . Now appIy the usual product rule to each coordinate of 
f(c(t» .] Since a E S\ the product a · a equals I ;  thus the first term in Eq. (3) 
is dgzC\11) if g(z) = +a and -dgz(W) if g(z) = -a. For the second term, 
differentiate the constant function g(x) . g(x) = I to show that g(z) . dg.(w) = 
O. (This result simply expresses the fact that the image of dgz is tangent to 
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Sk at g(z), thus perpendicular to the vector g(z).) Consequently, if g(z) = ± a, 
a ·dgz(w) = 0, and the second term vanishes. Q.E.D. 

Corollary. The index of the vector field � at its zero z is + 1 if g :  X ---+ Sk 
preserves orientation at z, and - I  if g reverses orientation at z. 

Proo! According to Exercises 3 and 5 of Chapter 3, Section 5, the derivative 
d�z :  Tz(X) ---+ Rk+ ! actualIy carries Tz(X) into itself; furthermore, if d�z is an 
isomorphism of Tz(X), then indz(�) equals the sign of the determinant of 
d�z :  T.(X) ---+ Tz(X). Now the linear map dTa : Rk+ !  ---+ Rk+ !  is just the 
identity, so, considered as linear maps of Tz(X) into Rk+ ! , 

First, suppose that g(z) = + a, so d�z = +dgz. Since 

the two subspaces Tz(X) and ToCSk) must be identica\. Moreover, they have 
the same orientation, for the outward uni t normal to X at z is �(z) = g(z) = a, 
while the outward unit normal to Sk at a is a itself. Since a is a regular value 
of g, the Iinear map dgz = d� z is an isomorphism. Since det (d� z) = det (dgz), 
the exercise implies that ind.(�) = + 1 if dgz preserves orientation and - I  if 
dgz reverses orientation. 

If g(z) = -a, then d�z = -dgz. Again, we conclude that the two sub­
spaces Tz(X) and La(Sk) in Rk+ !  are identical, including their orientations. 
The regularity of -a implies that d�z is an isomorphism, so the exercise 
applies. Here 

det (d�z) = det (-dgz) = ( - I )k det (dgz), 

which stilI equals det (dgz), because k is even. So again, indz(�) = + I if dgz 
preserves orientation and - I  if dg. reverses orientation. Q.E.D. 

The Gauss-Bonnet theorem folIows directIy. For by the Poincaré-Hopf 
theorem, the sum of the indices of � equals x(X). By the corolIary, ifwe first 
add the indices at zeros where g(z) = + a, we get I(g, {aD = deg (g) ; similar­
Iy, adding the, indices at zeros where g(z) = -a gives l(g, {-aD = deg (g). 
Therefore x(X) = 2 deg (g), completing the proof. (Question: Why does the 
proof fail for odd-dimensional hypersurfaces ?). Since this computation is a 
famous resuIt in its own right, let us record it as a theorem. 

Theorem. For even-dimensional manifolds, the Euler characteristic equals 
twice the degree of the Gauss map. 
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A final remark : One can give an alternative definition of curvature sim­
ply by using metric properties of the manifold X itself, not properties of its 
embedding in RN. For two dimensions, this fact was realized by Gauss and is 
called the theorem egregium. Chern has given an "intrinsic" proof of the 
Gauss-Bonnet theorem, that is, one that completely avoids embedding (see 
[ 16]). For an accessible two-dimensional version of this proof, see [ 17] .  (A 
"piecewise linear" form of the intrinsic Gauss-Bonnet theorem is derived 
below, in Exercise I I .) 

EXERCISES 

1. Let f: R 2 -> R be a smooth function, and let S c R 3 be its graph. 
Prove that the volume form on S is just the form dA described in Section 
4.t 

. 2. lf S is an oriented surface in R3 and (n t , n2, n3) is its unit normal vector, 
prove that the volume form is 

In particular, show that the volume form on the unit sphere is 

[HINT : Show that the 2-form just described is the 2-form defined by : 

(v, w) -> + det ( � )  for pairs of vectors v and w in R3.] 

3. Let A :  Rn -> Rn be a rotation (i.e . ,  an orthogonal linear mapping). 
Show that the map of Sn- t  onto Sn- t induced by A preserves the volume 
form (thafis, A* appIied to the volume form gives the volume form back 
again). 

4. Let C :  [a, b] -> R3 be a parametrized curve in R3. Show that its "vol­
ume" (i.e., the integraI over C of the volume form) is just the arc length : 

5. Letj be a smooth map of the interval [a, b] into the positive rea! num­
bers. Let S be the surface obtained by rotating the graph ofjaround the 

tVolume form is unfortunate terminology in two dimensions. "Area form" would be 
better. 
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x axis in R3. There is a c1assical formula which says that the surface 
area of S is equal to 

f: 2nf --/1 + (f/)2 dI. 

Derive this formula by integrating the volume form over S. [HINT: Use 
Exercise 2.] 

6. Prove that for the n - l sphere ofradius r in Rn, the Gaussian curvature 
is everywhere l frn- I • [HINT : Show only that the derivative of the Gauss 
map is everywhere just l /r times the identity.] 

7. Compute the curvature of the hyperboloid X2 + y2 - Z2 = l at the 
point ( l ,  O, O). [HINT : The answer is - I .] 

8. Letf = f(x, y) be a smooth function on R2, and let S e  R3 be its graph. 
Suppose that 

f(O) = :�(O) = �(O) = O. 

Let "I and "2 be the eigenvalues of the Hessian 

at O. 

Show that the curvature of S at (O, O, O) is just the product " 1"2'  

[HINT: ICs enough simply to consider the case f(x, y) = " IX2 + "zY2• 

Why?] 

9. A surface S c R 3 is called "ruled" if through every point of S there 
passes a straight line contained in S. Show that a ruled surface has 
Gaussian curvature less than or equal to zero everywhere. 

lO. Let T = Ta•b be the standard torus consisting of points in R3 that are a 
distance a from the circle of radius b in  the xy pIane (a < b). At what 
points is the curvature positive, at what points is it negative, and at 
what points is it zero ? 

11. Let TI, T2, • • •  , Tk be a collection of closed triangles in R3. The set 
S = TI U '  . .  U Tk is called a polyhedral surface if the following state­
ments are true.t [See part (a) of Figure 4-5.] 

tWe learned about this "intrinsic" form of the Gauss-Bonnet theorem for polyhedral 
surfaces from Dennis Sullivan. 
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(a) 

~ 
(b) (c) 

Figure 4-5 

(a) Each side of Ti is aIso the side of exactly one other triangIe T,. 
(b) No two triangIes have more than one side in common. 
(c) If Ti" . . .  , Ti, are the triangIes in the collection having v as a vertex, 

and s ... is the side opposite v in T ... , then U Si, is connected. [This dis-
quaIifies exampIe (b) in Figure 4-5.] 

For each vertex v we define ,,(v) to be 271: minus the sum of the angIes 
at the vertex. Prove : 

(i) lf each triangIe TI is subdivided into smaller triangIes (for ex­
ampIe, as indicated in  part (c) of Figure 4-5), the totaI sum 
L: ,,(v) over alI vertices is unchanged. 

(ii) 

L: ,,(v) = 271: ' X(S), v 

where the EuIer characteristic X(S) is defined to be number of 
vertices minus the number of sides pIus the number of trian­
gIes. (Compare with Chapter 3, Section 7.) [HINT : Every triangIe 
has three sides, and every side is contained in two triangles.] 

12. Let X be an oriented n - l dimensionaI manifold and f: X � Rn an 
immersion. Show that the Gauss map g: X � Sn- I is stili defined even 
though X is not, properIy speaking, a submanifoId of Rn. Prove that when 
X is even dimensionai, the degree of g is one-half the Euler characteristic 
of X. Show this is not the case for odd-dimensional manifolds by showing 
that the Gauss map of the immersion 

t -+ [cos (nt), sin (nt)] 

has degree n. 
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Measure Ze ro 

a n d  S a rd ' s Theore m  

If a = (al , . . .  , an) and b = (bi , . . .  , bn) are two n-tuples with al < bi , 
. . .  , an < bm we denote by S(a, b) the rectangular solid consisting of the 
points (XI '  . . .  , Xn) E Rn satisfying ai < Xi < bi, i = l ,  . . .  , n. The product 

is the volume of S = S(a, b), denoted voI (S). (If bi - a l  = . . .  = bn - an, 
S is a cube.) 

As defined in Chapter l ,  Section 7, a subset A c Rn has measure zero if 
for every E > O there exists a countable covering of A by solids SI'  S2' . • .  
such that L: voI (S{) < E. (Problem: Show that the Si may be taken to be 
cubes.) 

It is obvious that subsets of sets with measure zero also have measure 
zero. And we showed in Chapter l ,  Section 7, that countabie unions of sets of 
measure zero are stilI of measure zero. From this fact, we can exhibit many 
sets of measure zero. 

Exercise. Show that the naturai copy of Rn- I inside Rn-namely, 
{(XI > . . . , Xn- I >  O)}-has measure zero. [HINT : Show that every compact sub­
set of Rn- I sits inside a singie rectangular solid in Rn with volume < d 

202 
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What is surprisingIy hard to demonstrate is that there exist sets not of 
measure zero ! We deduce this fact with a c1ever proof due to Von Neumann. 

Proposition. Let S be a rectanguIar soIid and SI ' S2' . . .  a covering of its 
cIosure of S by other soIids. Then L; voI (S,) > voI (S). 

Proo! CalI (ZI ' . . . , zn) an integer point of Rn if each ZI is an integer. Let 
S = S(a, b). The number of integers in the intervaI ai < Z, < bi is Iess than 
bi - ai + I and at least as Iarge as bi - ai - l .  Assume, for the moment, 
that the Iength bi - ai of each side of S is greater than I .  Then the number 
of integer points in S is Iess than 

and at Ieast 

iI: (bi - al - 1). i= 1  

I f  SI' S2, . . . i s  a cover of S, then, by compactness, some finite number 
SI ' . . .  , SN also is a cover. Now the number of integer points in S is at most 
equal to the sum of the numbers of integer points in S\ ) . . .  , SN. Thus if 
S, = S(af, bI), we get 

n N n 
II (bi - a, - l )  < L; II (b{ - a{ + I ). 
i = 1  j = 1  ; = 1  

For each positive number ,l, define À.S(a, b) = S(À.a, À.b). Since À.S is 
covered by À.S1 ,  • • •  , À.SN the preceding calcuiation gives 

n N n 
II (À.b, - ,la, - 1 )  < L; II (À.b{ - À.a{ + l ). 
;= 1 j= l ; = 1  

Now, no matter what the size of S, i f  ,l is Iarge enough, then À.S wiII have 
sides of length greater than I .  So the Iast inequality is  vaIid for large ,l without 
any restriction on S. 

You have now only to divide both sides of the inequality by À.n and then 
let ,l -> 00 to complete the proof. Q.E.D. 

For the proof of Sard's theorem, we will need the measure zero form of 
Fubini's theorem. Suppose that n = k + /, and write Rn = Rk X RI. For 
each c E Rk, let Ve be the "vertical slice" {c} x RI. We shall say that a subset 
of Ve has measure zero in Ve if, when we identify Ve with RI in the obvious 
way, the subset has measure zero in RI. 



204 ApPENDIX 1 MEASURE ZERO AND SARD'S THEOREM 

Fubini Theorem (for measure zero). Let A be a closed subset of Rn such 
that A n Ve has measure zero in Ve for ali c E Rk. Then A has measure zero 
in  Rn. 

Proof Because A may be written as a countable union of compacts, we may, 
in fact, assume A compact. Also, by induction on k, it suffices to prove 
the theorem for k = l and l = n - l .  We will divide the proof into several 
lemmas. 

Lemma 1. Let SI ' . . .  , SN be a covering of the closed interval [a, b] in RI. 
Then there exists another cover S� , . . .  , S� such that eath S� is contained 
in some Si> and 

M 
I: length (S�) < 2(b - a). 

) = 1  

Proof Left to the reader. 

Given a set I c R, let VJ = I X Rn- I in Rn. 

Lemma 2. Let A be a compact subset of Rn. Suppose that A n Ve is con­
tained in an open set U of Ve. Then for any suitably small interval I about c 
in  R, A n VJ is contained in I X U. 

Proof If no t, there would exist a sequence of points (x)' Cj) in A such that 
c) -- c and xj fj:. U. Replace this sequence by a convergent one to get a con­
tradiction. Q.E.D. 

Proof of Fubini. Since A is compact, we may choose an interval I = [a, b] 
such that A c VJ• For each c E I, choose a covering of A n Ve by (n - l )  
dimensionai rectangular solids SI (C), . . .  , SNJC) having a total volume less 
than E. Choose an interval J(c) in R so that the rectangular solids J(c) X StCc) 
cover A n VJ (Lemma 2). The J(c)'s cover the li ne interval [a, b], so we can 
use Lemma l to replace them with a finite collection of subintervals J� with 
total length less than 2(b - a). Each J� is contained in some interval J(cj), so 
the solids J� X Sj(c) cover A ;  moreover, they have total volume less than 
2E(b - a). Q.E.D. 

We need one more fact from measure theory-namely, that measure zero 
makes sense on manifolds. To show this, we prove 

Theorem. Let U be an open set of Rn, and letf: U -- Rn be a smooth map. 
If A c U is of measure zero, thenf(A) is of measure zero. 
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Proof We may assume that A is compact and contained in U, since A may 
be written as a countable union of subsets with this property. Let W be an 
open neighborhood of A such that W is compact and contained in U. 

Since W is compact, there exists a constant M such that If(x) - f(y) I < 
M I x - y I for ali pairs x,y E W. lì follows that there exists another constant 
M' such that if S is any cube in W, thenf(S) is contained inside a cube S' of 
volume less than M' voI (S). 

Now show that the set A can be covered by a sequence of cubes SI '  S2' 
etc., each contained in W, with L: voI (SJ less than any prescribed E. Thus we 
get a covering S'I '  S�, . . .  of f(A) by cubes with L: voI (S;) < M'E. As E is 
arbitrary,f(A) has measure zero. Q.E.D. 

Exercise. Combine this theorem with the first exercise to prove 

Mini-Sard. Let U be an open subset of Rn, and letf: U ---+ Rm be a smooth 
map. Then if m >  n,f(U) has measure zero in Rm. 

(lncidentally, this weak form of Sard's theorem is ali we used to prove the 
Whitney embedding theorem.) 

Now we may define a subset A of a k-dimensional manifold X to be of 
measure zero provided that, for every local parametrization f: U ---+ X, the 
preimagef- I (A) has measure zero in U c Rk. Because of the last theorem, it 
suffices to check that around any point in X there exists one Iocal paramet­
rization f: U ---+ X for which f - I (A) has measure zero. 

We are now ready for the task of proving 

Sard's Theorem. Let f: X ---+ Y be a smooth map of manifolds, and let C 
be the set of critical points offin X. Thenf(C) has measure zero in Y. 

Our proof is taken virtually verbatim from Milnor [ I ]  pp. 16- 19. By the 
Second Axiom of Countability, we can find a countabIe collection of open 
sets (Ui, VJ, Ui open in X and VI open in Y, such that the U/s cover X, 
f(UI) c V/o and the U/s and V/s are diffeomorphic to open sets in Rn. There­
fore it suffices to prove 

Theorem. Suppose that U is open in Rn and f: U ---+ RP is a smooth map. 
Let C be the set of criticaI points of f. Then f( C) is of measure zero in Rp. 

The theorem is certainIy true for n = 0, so we will assume that it is true 
for n - l and prove it for n. We begin by partitioning C into a sequence of 
nested subsets C :::> CI :::> C2 :::> , • •  " where CI is the set of ali x E U such 
that (df)x = 0, and CI for i > l is the set of ali x such that the partial 
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derivati ves of f of order < i vanish at x. (Note that the C/s are c10sed subsets 
of C.) We will first prove 

Lemma 1� The imagef(C - CI) has measure zero. 

Proof Around each x E C - C I , we wiIl find an open set V such that 
f( V (ì C) has measure zero. Since C - C I is covered by countabIy many of 
these neighborhoods (by the Second Axiom of CountabiIity), this wiU prove 
thatf(C - CI) has measure zero. 

Since x fj:. C l >  there is some partiaI derivative, say af/ax l' that is not 
zero at x. Consider the map h : U ----> Rn defined by 

h(x) = (f1 (X), x2, . . .  , xn). 

dh" is nonsingular, so h maps a neighborhood V of x diffeomorphicaUy onto 
an open set V'. The composition g = f o h-I wiU then map V' into Rp with 
the same criticaI vaIues as f restricted to V. 

We have constructed g so that it has the foUowing property : it maps 
points of the form (t, x2, . . .  , xn) in V' into points of the form (I, Y2, . . . , Y p) 
in Rp (i.e . ,  first coordinates the same). Therefore for each t, g induces a map 
g' of (t x Rn- I)  (ì V' into t X Rp- I .  Since the derivative of g has the form 

a point of t X Rn- I  is criticaI for g' if and only if it is criticaI for g [because 
the determinant of the matrix on the right is just det (aguaxJ]. By induction, 
Sard's theorem is true for n - l ,  sò the set of criticaI vaIues of g' has measure 
zero. Consequently, by Fubini's theorem, the set of criticai vaIues of g is of 
measure zero.t Q.E.D.  

Next we wiIl prove 

Lemma 2. f(Ck - Ck+ I ) is of measure zero for k > l .  

Proof This is a similar argument, but easier. For each x E Ck - Ck+ 1 
there is some (k + l )st derivative of f that is not zero. Thus we can find a 
kth derivative of J, say p, that (by definition) vanishes on Ck but has a first 
derivative, say a p/ax l '  that does not vanish. Then the map h :  U ----> Rn, de-

tThe criticaI values of g need not be a closed set; however, the criticaI points of g are 
c10sed (as a subset of the domai n of g). Since the domain of g is a countable union of com­
pact sets, the same is true of the criticaI points, hence also of the criticaI values. This 
means that we can apply Fubini. 
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fined by h(x) = (p(x), x2, • • •  , xn), maps a neighborhood V of x diffeomor­
phically onto an open set V'. By construction, h carri es Ck (ì V into the 
hyperplane O X Rn- I .  Therefore the map g = f o h-I  has all its criticaI points 
of type Ck in the hyperplane O X Rn- I .  Let g :  (O X Rn- I )  (ì V' -> Rp be the 
restriction of g. By induction, the set of criticaI values of g is of measure zero. 
Moreover, the criticaI points of g of type Ck are obviously criticaI points of 
g. This proves that the image of these criticaI points is of measure zero, and, 
therefore,f(Ck (ì V) is of measure zero. Since Ck - Ck- I is covered by count­
ably many such sets V, we are done. Q.E.D. 

Finally, we wiII prove 

Lemma 3. For k > n/p - l , f(Ck) is of measure zero. 

Combined with the two preceding lemmas, this will prove the theorem. 

Proof of Lemma 3. Let S c U be a cube whose sides are of length O. If k is 
sufficient1y large (k > n/p - I ,  to be precise), we will prove that f(Ck (ì S) 
has measure zero. Since Ck can be covered by countably many such cubes, 
this wiII prove thatf(Ck) has measure zero. 

From Taylor's theorem, the compactness of S, and the de finiti o n of Ck, 
we see that 

f(x + h) = f(x) + R(x, h), 

where 

( I )  I R(x, h) I < a I h Ik+ I 

for x E Ck (ì S, X + h E S. Here a is a constant that depends only onfand 
S. Now subdivide S into rn cubes whose sides are of length o/r. Let SI be a 
cube of the subdivision that con .ains a point x of Ck• Then any point of SI 
can be written as x + h with 

(2) 

From ( 1), it follows thatf(SI) Iies in a cube with sides of length b/rk+ 1 centered 
about o(x), where b = 2a (,.J1l0)k + I is constant. Hencef(Ck (ì S) is contained 
in the union of at most rn cubes having total volume 

If k + I > n/p, then evident1y v tends to O as r -> 00, sof(Ck (ì S) must have 
measure zero. This completes the proof of Sard's theorem. Q.E.D. 
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Classificat ion of  

Co m p a ct One-Ma n ifo lds  

In this appendi x we prove the following classification theorem, using 
Morse functions. For a proof based on arc Iength instead, see the appendix 
of Milnor [ l ] . 

Theorem. Every compact one-dimensionai manifold with boundary is dif­
feomorphic either to a circle or a closed interval. 

The proof requires a straightforward technical lemma, which we prove at 
the start. 

Smoothing Lemma. Let g be a function on [a, b] that is smooth and has 
positive derivative everywhere except at one interior point c. Then there exists 
a globally smooth function g that agrees with g near the endpoints and has 
positive derivative everywhere. 

Proof Let p be a smooth nonnegative function that vanishes outside a 

compact subset of (a, b), which equals l near c, and which satisfies S: p = l .  
Define 

g(x) = g(a) + S: [kp(s) + g'(s)(I - p(s» ] ds, 

208 
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where the constant 

k = g(b) - g(a) - f: g'(S)(I - p(S» ds. 

(Note k > O.) We leave you to verify that g has the desired properties. 
Q.E.D. 

To prove the theorem, choose a Morse functionf on X. Let S be the union 
of the criticai points of f and the boundary points of X. As S is finite, X - S 
consists of a finite number of connected one-manifolds LI , . . .  , LN• 

Proposition. f maps each Li diffeomorphically onto an open interval in R I . 

Proof Let L be any of the Li. Because f is a Iocal diffeomorphism and L is 
connected, f(L) is open and connected in R I . Moreover, f(L) is contained in 
the compact setf(X), sof(L) = (a, b). It suffices to show that f is one to one 
on L, for thenf -I : (a, b) -> L is defined, and it is (Iocally) smooth becausef 
is a local diffeomorphism. 

Let p be any point of L and set c = f(p). We show that every other point 
q E L can be joined to p by a curve y :  [c, d] -> L (or y :  [d, c] -> L), such that 
f o y = identity and y(d) = q. Since f(q) = d =f= c = f(p), this result shows 
thatfis one to one (and, in fact, virtuaIly constructsf- I ). So let Q be the set 
of points q that can be so joined. We leave to you the triviaI verification that 
Q is both open and cJosed, thanks to the fact thatfis a Iocal diffeomorphism. 
Therefore Q = L. Q.E.D. 

Now we invoke a lemma that you are asked to prove in Exercise 8, Chap­
ter 2, Section 2. 

Lemma. Let L be a subset of X diffeomorphic to an open interval of RI , 
where dim X = l .  Then its closure L contains at most two points not in L. 

Here the diffeomorphism f of Li to an open intervaI of R extends to the 
cJosure Li' so Figure A-l cannot occur. Thus eaclì L, has exactIy two bound­
ary points. Also, since X is a manifold, each point p E S is either on the 
boundary of one or two L, ; and in the former case, p E a x. (Why cannot 
Figure A-2 occur ?) 

Figure A-l 
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Figure A-2 

We will cali a sequence LI , . . .  , Lk a chain, provided that each consecu­
tive pair lj and lj+ I have a common boundary point p" j = 1 ,  . . .  , k - l . 
Let Po denote the other boundary point of LI > and Pk the other boundary 
point for Lk' Since there are only finitely many Li altogether, there clearly 
exists a maximal chain, a chain that cannot be extended by appending an­
other Li' We finish our proof by establishing the 

Claim. If LI , . . .  , Lk is a maximal chain, then it contains every Li' If lk 
and lo have a common boundary point, then X is diffeomorphic to the 
circle ; if not, X is diffeomorphic to a closed interval. 

Proof Suppose that L is not included in the chain. Then l cannot share the 
boundary point Po or h ;  otherwise the chain could be lengthened. It also 

k _ 
cannot share any other Pj' since Figure A-2 is prohibited. Thus U Lj does '= 1 
not intersect any of the l excluded from the chain. Consequently, this union 
is both open and closed in X, and therefore 

by connectivity. 

k _ 
x = U L, 

,= I 

Now the mapfbehaves nicely on each L" but it may reverse directions as 
it crosses some boundary points (Figure A-3). We will simply straighten it out 
in the least delicate manner. Set a, = f(p,), so thatfmaps L, diffeomorphical­
ly onto (a'_ I ' a,) or (a" a,- I ), whichever interval makes sense. For each j = 
1 ,  . . . , k, pick an affine map 'r, : RI -> RI  carrying a'_ 1 to j - l and a, to j. 
(An affine map is simply a linear one plus a constant, l -> (Xl + p.) Define 
fj : I, -> [j - l ,j] bYf, = 'r, o f  

• 

f increasing 
• 

• 

f increasing 
• 

Figure A-3 

• 
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If ao =F ab then the ij agree on points of common definition. Therefore 
they fit together to define a map F :  X --> [O, k], by F = ij on ij. F is continu­
ous and a diffeomorphism except at the points P I >  . . . , Pk- I . Using the 
Smoothing Lemma, simply modify F to be a diffeomorphism globally. 

If ao = ab set gj = exp [i(2n/k)iJ]. Then we can define G :  X --> SI by 
setting G = gJ on ij. G is continuous and a diffeomorphism except at PI >  . . .  , 
Pk- I .  Again use the Smoothing Lemma (applied in local coordinates on SI) 
to make G a global diffeomorphism. Q.E.D. 
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As collateral reading, we highly recommend the following two books : 

[ I ]  J. MILNOR, Topology from a Differential Viewpoint. University of 
Virginia Press, 1 965. 

[2] M .  SPIVAK, Calculus on Manifolds. New York : Benjamin, 1 965. 

We also recommend that you look at some of the following books, which 
elaborate on matters we have touched on here. We don't propose that you 
read these books from cover to cover. The assumption is that you wiU have a 
few hours free now and then to find out a little more about ideas that have 
piqued your interest, not that you will spend a whole semester pursuing any 
topic. Therefore most of these references are not course books ; or, if they are, 
the relevant sections are explicitly cited. You may find the following rating 
system helpful. 

G = The book is elementary. Prerequisites : only a first course in analysis 
and linear algebra. 

PG = The book is a bit less elementary; a little mathematical sophistication 
is helpful (e.g., some modern algebra, some algebraic topology). 

R = Graduate level mathematics, but a perceptive undergraduate can gain 
some insights from it. 

X = The book is hard going for a graduate student, meant to be read more 
for inspiration than for comprehension. 
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Rere are some references for the material in Chapter l . 

[3] J. MILNOR, Morse Theory. Princeton, N.J. : Princeton University Press, 
No. 5 1 , 1 963. 
We showed in Chapter l ,  Section 7 that every manifold possesses 
Morse functions. For the implications of this fact, look at the first part 
of this book (pp. 1-42). A little algebraic topology is helpful but not 
indispensable [PG]. 

[4] M.  MORSE, PUs, Peaks, and Passes. Produced by the Committee on 
Educational Media, Mathematical Association of America. Released 
by Martin Learning Aids, 1 966. 
In this engaging film, Marston Morse shows how geography teIIs us 
about topology. In two dimensions, the criticaI points of a Morse func­
tion correspond to the mountains, valIeys, and passes on the graph 
surface [G]. 

[5] A. WALLACE, Differential Topology, First Steps. New York : Benjamin, 
1 968. 
The author discusses some formidable subjects (Morse theory and 
surgery) from an elementary point of view and also gives a Morse theo­
retical classification of two-manifolds [PG]. 

[6] A. GRAMAIN, Cours d'initiation à la topologie algébrique, Orsay, Faculté 
des Sciences, 1 970. 
Rere is another piace where you can find two-manifolds classified using 
Morse theory. For beginners, this book is a little more pedestrian and 
easier to read than WaIIace. (Rowever, it is written in French.) [G] 

[7] L. AHLFORS and L. SARIO, Riemann Surfaces. Princeton, N.J. : Prince­
ton University Press, 1 960. 
Rere you can find a classical treatment of the classification of two­
manifolds. 

[8] R. ABRAHAM, Transversal Mappings and Flows. New York : Benjamin, 
1 967. 
The transversality theorem has important applications in the theory of 
dynamical systems. Before glancing through Abraham's book for this 
subject, however, you should read the Smale paper cited below [R]. 

[9] M. GOLUBITSKY and V. GUILLEMIN, Stable Mappings and Their Singu­
larities. New York : Springer, 1 973. Another interesting application of 
transversality is presented here : the study of singularities of mappings 
[R]. 

Concerning the material in Chapters 2 and 3, we strongly recommend that 
you read Milnor's book [ I ] . In particular, Section 7 of Milnor contains an 
introduction to framed cobordism. If the material interests you, we recom­
mend you pursue the subject further through some of the foIIowing sources. 
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[ lO] L. PONTRYAGIN, "Smooth Manifolds and Their Applioations in Homo­
topy Theory," Amer. Math. Society Trans/ations, Series 2, 11( 1959), 
1 - 1 14. 
This is fairly easy to read ; don't be put off by the unbending lemma­
theorem-corollary format or by the Slavicisms that have managed to 
creep into the translation. It is helpful to know a little homotopy 
theory [R]. 

[ 1 1 ]  P. ALEXANDROFF and H .  HOPF, Top% gie. New York : Chelsea, 1 965 
(reprint of the originai edition published in Berlin in 1 935). 
One of the classical treatises on topology. It is not easy reading-it is 
written in German, which will deter some of you-but you will find 
some delightful applications of the ideas we have discussed [X]. 

The usual formulation of the Lefschetz Fixed-Point Theorem includes a 
prescription for computing the global Lefschetz number in terms of homo­
logy theory. If you are interested in seeing how this goes, and you've had 
some algebraic topology, you might look at 

[ 12] M.  GREENBERG, Lectures on A/gebraic Top% gy. New York : Benjamin, 
1 967, Section 30 [PG] . 

If you want to go a little deeper into the topological aspects of flows and 
vector fields than we did, a good piace to start is 

[ 13] W. HUREWICZ, Lectures on Ordinary Differentia/ Equations. Cambridge, 
Mass. : The MIT Press, 1 958, Chapter 5, pp. 102- 1 1 5  [G]. 

We also recommend a very readable survey article : 

[ 14] S. SMALE, "Differentiable Dynamical Systems," Bulletin 01 the A .M.S., 
73 ( 1 967), 747-8 1 7  [PG]. 

For the material in Chapter 4, our mai n reference is Spivak [2]. It probably 
wouldn't do you any harm, however, to go back to a caIculus text like Apos­
tol and remind yourself what the usual Green's theorem, Divergence Theo­
rem, and Stokes theorem are. 

For the argument principle, look at 

[ 1 5] AHLFORS, Comp/ex Ana/ysis. New York : McGraw-Hill, 1953, p. 1 23 
[PG]. 

The form of the Gauss-Bonnet theorem we proved in Chapter 4, Section 9 
is the so-called "extrinsic" Gauss-Boimet theorem (for hypersurfaces in Rn). 
There is a much more subtIe "intrinsic" Gauss-Bonnet theorem : 

[ 16] S. CHERN, "A Simple Intrinsic Proof of the Gauss-Bonnet Formula for 
Closed Riemannian Manifolds," Anna/s 01 Math, 45 ( 1 944), 747-752 [X]. 

You'lI probably find the Chern paper hard to read unless you have a 
fairly strong background in differential geometry. A very readable discussion 
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of the two-dimensional intrinsic Gauss-Bonnet theorem can be found, how­
ever, in Chapter 7 of 

( 1 7] I. M .  SINGER and H. A. THORPE, Lecture Notes on Elementary Geo­
metry and Topology. Glenview, III. : Scott, Foresman, 1967 [PG]. 

(The reason that the two- dimensionai case is simpler than the n-dimensionai 
case is that the group of 2 X 2 orthogonal matrices is abelian !) 

For the relationship between the intrinsic and extrinsic forms of the 
Gauss-Bonnet theorem, look at Chapter 8 of Singer-Thorpe. 

For an introduction to cohomology through forms, as in Section 6, we 
recommend 

[ 1 8] M. SPIVAK, A Comprehensive Introduction to Differential Geometry. 
VoI. I ,  Boston, Mass. : Publish or Perish, Inc. 

Apropos, we highly recommend Spivak as a generai textbook. It is the 
best introduction we know of to graduate level differential geometry. Unfor­
tunately, it is rather hard to obtain. Bookstores don 't seem to carry it. Y ou 
can, however, get i t  by writing directly to Publish or Perish, Inc., 6 Beacon 
St., Boston, Mass. 02108. 
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